Search results

1 – 1 of 1
Article
Publication date: 18 October 2018

Xiangquan Wu, Qin Lian, Dichen Li and Zhongmin Jin

This study aims to develop a multi-material stereolithography (MMSL) technique to directly fabricate a biphasic osteochondral scaffold.

Abstract

Purpose

This study aims to develop a multi-material stereolithography (MMSL) technique to directly fabricate a biphasic osteochondral scaffold.

Design/methodology/approach

A bespoke prototype MMSL system was developed based on a bottom-up mask projection approach. The system was controlled by a multi-material fabrication algorithm with minimum number of switching cycles during fabrication. A variable-power light source was used to fabricate materials with significantly different curing characteristics. The light-curable poly(ethylene glycol) diacrylate (PEGDA) hydrogel and beta-tricalcium phosphate (β-TCP) ceramic suspension were used for fabricating the biphasic osteochondral scaffold.

Findings

The bonding strength of the multi-material interface is shown to be mainly affected by the type of photopolymer, rather than the switching of the materials in MMSL. Lighting power densities of 2.64 and 14.98 mW/cm2 were used for curing the PEGDA hydrogel and the ß-TCP ceramic suspension, respectively. A biphasic osteochondral scaffold with complex interface was successfully fabricated.

Originality/value

This study proposes a potential technical method (MMSL) for manufacturing a complex biphasic osteochondral scaffold composing a PEGDA hydrogel/ß-TCP ceramic composite in a time-efficient and precise manner. The designed bone-cartilage scaffold interface and the surface of the cartilage scaffold can be precisely manufactured.

1 – 1 of 1