Search results

1 – 3 of 3
Article
Publication date: 8 September 2020

Shihao Li, Rongjun Cheng, Hongxia Ge and Pengjun Zheng

The purpose of this study is to explore the influence of the electronic throttle (ET) dynamics and the average speed of multiple preceding vehicles on the stability of traffic…

Abstract

Purpose

The purpose of this study is to explore the influence of the electronic throttle (ET) dynamics and the average speed of multiple preceding vehicles on the stability of traffic flow.

Design/methodology/approach

An extended car-following model integrating the ET dynamics and the average speed of multiple preceding vehicles is presented in this paper. The novel model’s stability conditions are obtained by using the thought of control theory, and the modified Korteweg–de Vries equation is inferred in terms of the nonlinear analysis method. In addition, some simulation experiments are implemented to explore the properties of traffic flow, and the results of these experiments confirm the correctness of theoretical analysis.

Findings

In view of the results of theoretical analysis and numerical simulation, traffic flow will become more stable when the average speed and ET dynamics of multiple preceding vehicles are considered, and the stability of traffic flow will also be enhanced by increasing the number of preceding vehicles considered.

Research limitations/implications

This study leaves the factors such as the mixed traffic flow, the multilane and so on out of account in real road environment, which more or less influences the traffic flow’s stability, so the real traffic environment is not fully reflected.

Originality/value

There is little research integrating ET dynamics and the average velocity of multiple preceding vehicles to study the properties of traffic flow. The enhanced model constructed in this study can better reflect the real traffic, which can also give some theoretical reference for the development of connected and autonomous vehicles.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 December 2021

Rui Yan, Yuye Wang, Pengjun Luo, Yangbo Li and Xiaochun Lu

The limited strength of polylactic acid (PLA) hinders its extensive engineering applications. This paper aims to enhance its strength and realize diverse applications.

223

Abstract

Purpose

The limited strength of polylactic acid (PLA) hinders its extensive engineering applications. This paper aims to enhance its strength and realize diverse applications.

Design/methodology/approach

Here, the continuous fiber reinforced PLA composites are fabricated by a customized fused filament fabrication three-dimensional printer. Uniaxial tensile and three-point flexural tests have been conducted to analyze the reinforcement effect of the proposed composites. To unveil the adhering mechanism of optic fiber (OF) and PLA, post failure analysis including the micro imaging and morphology have been performed. The underlying mechanism is that the axial tensile strength of the OF and the interfacial adhesion between PLA and OF compete to enhance the mechanical properties of the composite.

Findings

It is found that 10%–20% enhancement of strength, ductility and toughness due to the incorporation of the continuous OF.

Originality/value

The continuous OFs are put into PLA first time to improve the strength. The fabrication method and process reported here are potentially applied in such engineering applications as aerospace, defense, auto, medicine, etc.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 June 2013

Xianlong Cao, Hongda Deng, Wei Lan and Pengjun Cao

The aims are to investigate the influence of different environmental parameters on atmospheric corrosion of carbon steel and to further emphasize the feasibility and importance of…

Abstract

Purpose

The aims are to investigate the influence of different environmental parameters on atmospheric corrosion of carbon steel and to further emphasize the feasibility and importance of atmospheric corrosion monitor (ACM).

Design/methodology/approach

The experiment includes outdoor exposure test and laboratory simulation test. ACM as an electrochemical method was adopted in order to research the effects of the environmental parameters on the atmospheric corrosion of carbon steel.

Findings

The corrosion current of ACM can respond satisfactorily to the corrosion of carbon steel caused by different environmental factors, especially relative humidity. Sulfur dioxide can greatly accelerate the corrosion of carbon steel and the importance of sulfur dioxide is closely related to its concentration and relative humidity. Copper‐accelerated acetic acid salt solution is more aggressive than neutral salt solution, which may be due to sub acidity and copper ion in the former solution.

Originality/value

Recently, ACM seems to be ignored in the research of atmospheric corrosion when some new methods come up, but in practical applications it is a simple, direct and effective method that should be attached importance. This paper further verified the feasibility and effectiveness of ACM used in monitoring atmospheric corrosion and exploring the relationship between corrosion rate and environmental parameters.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Content type

Article (3)
1 – 3 of 3