Search results

1 – 3 of 3
Article
Publication date: 1 March 2018

Yung Sin Chong, Keat Hoe Yeoh, Pei Ling Leow and Pei Song Chee

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and…

Abstract

Purpose

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of multiwalled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite. The strain sensor array induces localized resistance changes at different external mechanical forces, which can be potentially implemented as electronic skin.

Design/methodology/approach

The working principle is the piezoresistivity of the strain sensor array is based on the tunnelling resistance connection between the fillers and reformation of the percolating path when the PDMS and MWCNT composite deforms. When an external compression stimulus is exerted, the MWCNT inter-filler distance at the conductive block array reduces, resulting in the reduction of the resistance. The resistance between the conductive blocks in the array, on the other hand, increases when the strain sensor is exposed to an external stretching force. The methodology was as follows: Numerical simulation has been performed to study the pressure distribution across the sensor. This method applies two thin layers of conductive elastomer composite across a 2 × 3 conductive block array, where the former is to detect the stretchable force, whereas the latter is to detect the compression force. The fabrication of the strain sensor consists of two main stages: fabricating the conducting block array (detect compression force) and depositing two thin conductive layers (detect stretchable force).

Findings

Characterizations have been performed at the sensor pressure response: static and dynamic configuration, strain sensing and temperature sensing. Both pressure and strain sensing are studied in terms of the temporal response. The temporal response shows rapid resistance changes and returns to its original value after the external load is removed. The electrical conductivity of the prototype correlates to the temperature by showing negative temperature coefficient material behaviour with the sensitivity of −0.105 MΩ/°C.

Research limitations/implications

The conductive sensor array can potentially be implemented as electronic skin due to its reaction with mechanical stimuli: compression and stretchable pressure force, strain sensing and temperature sensing.

Originality/value

This prototype enables various static and dynamic stimulus detections, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of MWCNT and PDMS composite. Conventional design might need to integrate different microfeatures to perform the similar task, especially for dynamic force sensing.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 October 2023

Wen Pin Gooi, Pei Ling Leow, Jaysuman Pusppanathan, Xian Feng Hor and Shahrulnizahani Mohammad Din

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed…

Abstract

Purpose

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed around a cylindrical chamber, the planar ECT sensor has been investigated for depth and defect detection. However, the planar ECT sensor has limited height and depth sensing capability due to its single-sided assessment with the use of only a single-plane design. The purpose of this paper is to investigate a dual-plane miniature planar 3D ECT sensor design using the 3 × 3 matrix electrode array.

Design/methodology/approach

The sensitivity map of dual-plane miniature planar 3D ECT sensor was analysed using 3D visualisation, the singular value decomposition and the axial resolution analysis. Then, the sensor was fabricated for performance analysis based on 3D imaging experiments.

Findings

The sensitivity map analysis showed that the dual-plane miniature planar 3D ECT sensor has enhanced the height sensing capability, and it is less ill-posed in 3D image reconstruction. The dual-plane miniature planar 3D ECT sensor showed a 28% improvement in reconstructed 3D image quality as compared to the single-plane sensor set-up.

Originality/value

The 3 × 3 matrix electrode array has been proposed to use only the necessary electrode pair combinations for image reconstruction. Besides, the increase in number of electrodes from the dual-plane sensor setup improved the height reconstruction of the test sample.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2004

Florence Yean Yng Ling and Yeu Pei Poh

This research investigates the barriers that are preventing female undergraduates who major in quantity surveying from entering the construction industry on graduation. Possible…

2870

Abstract

This research investigates the barriers that are preventing female undergraduates who major in quantity surveying from entering the construction industry on graduation. Possible barriers are identified and are categorized into external factors and internal factors. Self‐administered questionnaires were distributed to randomly selected female QS undergraduates. Among the external factors (work‐related factors), female undergraduates are discouraged by the nature of working conditions of and sexist attitudes that exist in the construction industry. Among the internal factors (personal attributes), female undergraduates indicated that they were not confident about their own abilities to work with male contractors and sub‐contractors. They also felt that they would not be assertive; unable to manage male construction operatives and subordinates; and did not possess adequate technical skills. Recommendations are given on how these barriers may be lowered or eliminated, so as to encourage more women to enter the construction industry on graduation.

Details

Women in Management Review, vol. 19 no. 8
Type: Research Article
ISSN: 0964-9425

Keywords

Access

Year

All dates (3)

Content type

1 – 3 of 3