Search results

1 – 10 of 68
Article
Publication date: 25 January 2024

Zeye Fu, Jiahao Zou, Luxin Han and Qi Zhang

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud…

Abstract

Purpose

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is to be proposed and verified. The overpressure distribution produced by multiple cloud detonation and the influence of cloud spacing and fuel mass of every cloud on the overpressure distribution are to be studied.

Design/methodology/approach

A calculation method is used to obtain the global overpressure field distribution after single cloud detonation from the overpressure time history of discrete distance to detonation center after single cloud detonation. On this basis, the overpressure distribution produced by multi-cloud under different cloud spacing and different fuel mass conditions is obtained.

Findings

The results show that for 150 kg fuel, when the spacing of three clouds is 40 m, 50 m, respectively, the overpressure range of larger than 0.1 MPa is 5496.48 mˆ2 and 6235.2 mˆ2, which is 2.89 times and 3.28 times of that of single cloud detonation. The superposition effect can be ignored when the spacing between the three clouds is greater than 60 m. In the case of fixed cloud spacing, once the overpressure forms continuous effective superposition, the marginal utility of fuel decreases.

Originality/value

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is proposed and verified. Based on this method, the global overpressure field of single cloud detonation is reconstructed, and the superimposed overpressure distribution characteristics of three cloud detonation are calculated and analyzed.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 August 2014

Qiuju Ma, Qi Zhang and Jiachen Chen

The purpose of this paper is to study propagation characteristics of methane explosion in the pipe network and analyze the propagation laws of methane explosion wave along the…

Abstract

Purpose

The purpose of this paper is to study propagation characteristics of methane explosion in the pipe network and analyze the propagation laws of methane explosion wave along the elbow pipe and pipe network.

Design/methodology/approach

Numerical simulation using software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, is adopted to simulate the propagation characteristics of methane explosion and the property of flow field in complex structures.

Findings

Due to reflection effects of corners of elbow pipe, the peak overpressures at corner locations in the elbow pipe go about two times higher than that in the straight pipe. In the parallel pipe network, the peak overpressure increases significantly at the intersection point, while the flame speed decreases at the junction. All these indicate that pipe corners and bifurcations could substantially enhance explosion partly which can bring more severe damage at the corner area. The explosion violence is strengthened after flames and blast waves are superimposed, such that equipments and people in these areas need special strengthening protection.

Originality/value

The numerical results presented in this paper may provide some useful guidance for the design of the underground laneway structures and to take protective measures at corners and bifurcations in coal mines.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2006

M. Grujicic, B. Pandurangan and B. A. Cheeseman

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand…

Abstract

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand is carried out using the AUTODYN computer program. The results obtained are compared with the corresponding experimental results obtained in Ref. [1]. To validate the computational procedure and the materials constitutive models used in the present work, a number of detonation‐related phenomena such as the temporal evolutions of the shape and size of the over‐burden sand bubbles and of the detonation‐products gas clouds, the temporal evolutions of the side‐on pressures in the sand and in air, etc. are determined and compared with their experimental counterparts. The results obtained suggest that the agreement between the computational and the experimental results is reasonable at short postdetonation times. At longer post‐detonation times, on the other hand, the agreement is less satisfactory primarily with respect to the size and shape of the sand crater, i.e. with respect to the volume of the sand ejected during explosion. It is argued that the observed discrepancy is, at least partly, the result of an inadequacy of the generic materials constitutive model for the sand which does not explicitly include the important effects of the sand particle size and the particle size distribution, as well as the effects of moisture‐level controlled inter‐particle friction and cohesion. It is further shown that by a relatively small adjustment of the present materials model for sand to include the potential effect of moisture on inter‐particle friction can yield a significantly improved agreement between the computed and the experimentally determined sand crater shapes and sizes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 2003

Ton de Weijer and Wally Huijbregts

In a new build waste incinerator, the waste (refuse derived fuel) was burned on a discontinuous moving grate. Frequent furnace overpressure peaks occurred because of this firing…

Abstract

In a new build waste incinerator, the waste (refuse derived fuel) was burned on a discontinuous moving grate. Frequent furnace overpressure peaks occurred because of this firing method and as a result, flue gas and fly‐ash were pushed out of the boiler and into the building. During the plant start up period, a seal in a water‐feed pipeline broke, and a large amount of condensed steam was discharged into the boiler house. Shortly thereafter, very severe corrosion was noticed on the galvanised gangways, steel building components, the boiler aluminium sheeting and on processing lines. A theoretical study of the condensation of the flue gas indicated that sulphuric acid would condense before it reached the external aluminium sheeting and that under normal conditions, dry hydrochloric acid fumes would be removed by the boiler house ventilators. However, the steam leakage had caused the hydrochloric acid to be dissolved in the condensed water and that had resulted in the severe corrosion damage, which had become evident subsequently.

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 May 2021

Lei Pang, Qianran Hu and Kai Yang

The purpose of this paper is to ascertain the harm to personnel and equipment caused by an external explosion during natural gas explosion venting. The external explosion…

Abstract

Purpose

The purpose of this paper is to ascertain the harm to personnel and equipment caused by an external explosion during natural gas explosion venting. The external explosion characteristics induced by the indoor natural gas explosion are the focal points of the investigation.

Design/methodology/approach

Computational fluid dynamics technology was used to investigate the large-scale explosion venting process of natural gas in a 6 × 3 × 2.5 m room, and the characteristics of external explosion under different scaled vent size (Kv = Av/V2/3, 0.05, 0.08, 0.13, 0.18) were numerically analyzed.

Findings

When Kv = 0.08, the length and duration of the explosion fireball are 13.39 and 450 ms, respectively, which significantly expands the degree and range of high-temperature hazards. The suitable flow-field structure causes the external explosion overpressure to be more than twice that indoors, i.e. the natural gas explosion venting overpressure may be considerably more hazardous in an outdoor environment than inside a room. A specific range for the Kv can promote the superposition of outdoor rupture waves and explosion shock waves, thereby creating a new overpressure hazard.

Originality/value

Little attention has been devoted to investigating systematically the external explosion hazards. Based on the numerical simulation and the analysis, the external explosion characteristics induced by the indoor large-scale gas explosion were obtained. The research results are theoretically significant for mitigating the effects of external gas explosions on personnel and equipment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1967

Jim R. Thompson and John E. Parnell

SONIC boom is the name which has been given to the sound heard on the ground immediately following the passage of an aircraft overhead at supersonic speeds. This sound, which has…

Abstract

SONIC boom is the name which has been given to the sound heard on the ground immediately following the passage of an aircraft overhead at supersonic speeds. This sound, which has been compared to nearby thunder, results from the passage of the aircraft's shock‐wave field over the observer.

Details

Aircraft Engineering and Aerospace Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 28 October 2014

Qi Zhang and Qiuju Ma

Whether a fire can be initiated in an explosion accident depends on the explosion and deflagration process. In the methane-air explosion in a tunnel, the flame accelerates from…

Abstract

Purpose

Whether a fire can be initiated in an explosion accident depends on the explosion and deflagration process. In the methane-air explosion in a tunnel, the flame accelerates from the ignition point. However, where it begins to decelerate is not clear. The purpose of this paper is to examine the explosion overpressure, flow and flame propagation beyond the premixed area of methane-air in a tunnel.

Design/methodology/approach

The numerical simulation was used to study the explosion processes of methane-air mixtures in a tunnel. Based on the numerical simulation and its analysis, the explosion overpressure, flow and flame propagation rules beyond the premixed area were demonstrated for a methane-air explosion.

Findings

The peak overpressure of methane-air mixture explosion was observed to reach its maximum beyond the original premixed area of methane-air. The hazardous effects beyond the premixed area may be stronger than those within the premixed area for a methane-air explosion in a tunnel. Under the conditions of this study, the ratio between the length of combustion area (40 m) and that of original premixed area (28 m) reaches 1.43.

Originality/value

Little attention has been devoted to investigating the explosion overpressure, flow and flam propagations beyond the original premixed area of methane-air in a tunnel. Based on the numerical simulation and the analysis, the propagation rule of overpressure wave and flow inside and outside the space occupied by methane/air mixture at the volume fraction of 9.5 percent in a tunnel were obtained in this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 April 2014

Qi Zhang, Lei Pang and Dachao Lin

The high-velocity wind caused by a methane-air explosion is one of the important hazardous effects in explosion events of coal mines, and, however, until now it has not been…

Abstract

Purpose

The high-velocity wind caused by a methane-air explosion is one of the important hazardous effects in explosion events of coal mines, and, however, until now it has not been received much attention from scientific works. The paper aims to discuss this issue.

Design/methodology/approach

In consideration of the difficulties in observing particle velocities of high-velocity flows, this work presented a study to reveal the regularity during a methane-air explosion happening in the tunnel of coal mine through the numerical analysis approach.

Findings

The strong wind caused by a methane-air explosion is a significant hazard and can cause damage in the accidents of methane-air explosion in underground coal mines, especially at structural opening, according to this work. Obtained results show that maximum particle velocity of the high-velocity wind occurs in the outside region of the premixed area, with a peak value of 400∼500 m/s, and the peak velocity of the high-velocity wind decreases exponentially with distance beyond the premixed area.

Originality/value

The objective of this work was to examine the effect of wind caused by a methane-air explosion in a tunnel. Other information, such as shock wave and flame and temperature distribution, has been reported in the previous literatures. However, in the accidents of methane-air explosion in underground coal mines, some phenomena (structural opening is destroyed badly) can not be understood by using shock wave and flame and temperature distribution caused by the explosion. The strong wind caused by a methane-air explosion is another significant hazard and can cause damage in the methane-air explosion accidents in underground coal mines, especially at structural opening, according to this work.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2004

Mohanad El‐Harbawi, Sa'ari Mustapha, S. Abdul Rashid, Thomas S.Y. Choong and Mohamed AL‐Shalabi

It is known that there are hazards associated with the storage, handling and use of liquefied petroleum gas. Storage process plants of dangerous substances define the set of risk…

2198

Abstract

It is known that there are hazards associated with the storage, handling and use of liquefied petroleum gas. Storage process plants of dangerous substances define the set of risk sources. Release of chemical due to accident could be severe and poses an immediate effect to workers on‐site and communities off‐site as well as it causes adversely a potential effect on the environment. LPG is considered to be a very important fuel and chemical feed stock. The material has been involved in many major fires and explosions. This paper presents the most recent analysis techniques for evaluating several physical models. These models are used to calculate the physical effects of explosion and fire from LPG accidents and also to predict the affected area.

Details

Disaster Prevention and Management: An International Journal, vol. 13 no. 2
Type: Research Article
ISSN: 0965-3562

Keywords

Article
Publication date: 24 September 2010

M. Grujicic, G. Arakere and T. He

This paper aims to conduct a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of the interaction between a single planar blast wave…

1192

Abstract

Purpose

This paper aims to conduct a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of the interaction between a single planar blast wave and a human head in order to assess the extent of intra‐cranial shock wave generation and its potential for causing traumatic brain injury.

Design/methodology/approach

Two levels of blast peak overpressure were selected, one corresponding to the unprotected lung‐injury threshold while the other associated with a 50 percent probability for lung injury caused death. Collision of the head with a stationary/rigid barrier (at an initial collision velocity of 5 m/s) was also analyzed computationally, since blunt‐object impact conditions may lead to mild traumatic brain injury (mTBI), i.e. concussion.

Findings

A comparison between the two blast and the single blunt‐object impact cases with the corresponding head‐to‐head‐collision results showed that, while the von Mises stress‐based head‐to‐head collision mTBI thresholds are not exceeded under blast‐loading conditions investigated, the high blast‐induced peak‐pressure levels within the intra‐cranial cavity may lead to mTBI.

Practical implications

While concussion is not generally considered as life altering/threatening, the associated temporary loss of situational awareness or consciousness may have devastating consequences in the case of common military tactical and battle‐field scenarios. This suggests that the head‐protection gear (primarily, the helmet) which are currently designed to withstand blunt‐object and ballistic impacts, should be redesigned in order to obtain the necessary level of head protection with respect to blast impact.

Originality/value

The paper provides a comprehensive computational investigation of impact on a human skull/brain assembly.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 68