Search results

1 – 10 of over 3000
Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 August 2015

John Ogbemhe and Khumbulani Mpofu

– The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

1046

Abstract

Purpose

The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

Design/methodology/approach

This paper discusses key issues in trajectory planning towards achieving full automation of arc welding robots. The identified issues in trajectory planning are real-time control, optimization methods, seam tracking and control methodologies. Recent research is considered and brief conclusions are drawn.

Findings

The major difficulty towards realizing a fully intelligent robotic arc welding system remains an optimal blend and good understanding of trajectory planning, seam tracking and advanced control methodologies. An intelligent trajectory tracking ability is strongly required in robotic arc welding, due to the positional errors caused by several disturbances that prevent the development of quality welds. An exciting prospect will be the creation of an effective hybrid optimization technique which is expected to lead to new scientific knowledge by combining robotic systems with artificial intelligence.

Originality/value

This paper illustrates the vital role played by optimization methods for trajectory design in arc robotic welding automation, especially the non-gradient approaches (those based on certain characteristics and behaviour of biological, molecular, swarm of insects and neurobiological systems). Effective trajectory planning techniques leading to real-time control and sensing systems leading to seam tracking have also been studied.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1668

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 6 August 2019

Lin Li, Jiadong Xiao, Yanbiao Zou and Tie Zhang

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots…

Abstract

Purpose

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots and guarantee tracking accuracy.

Design/methodology/approach

In the proposed approach, the robot path is expressed by a scalar path coordinate and discretized into N points. The motion between two neighbouring points is assumed to be uniformly accelerated motion, so the time-optimal trajectory that satisfies constraints is obtained by using equations of uniformly accelerated motion instead of numerical integration. To improve dynamic model accuracy, the Coulomb and viscous friction are taken into account (while most publications neglect these effects). Furthermore, an iterative learning algorithm is designed to correct model-plant mismatch by adding an iterative compensation item into the dynamic model at each discrete point before trajectory planning.

Findings

An experiment shows that compared with the sequential convex log barrier method, the proposed numerical integration-like (NI-like) approach has less computation time and a smoother planning trajectory. Compared with the experimental results before iteration, the torque deviation, tracking error and trajectory execution time are reduced after 10 iterations.

Originality/value

As the proposed approach not only yields a time-optimal solution but also improves tracking performance, this approach can be used for any repetitive robot tasks that require more rapidity and less tracking error, such as assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 August 2022

Zelin Wang, Feng Gao, Yue Zhao, Yunpeng Yin and Liangyu Wang

Path planning is a fundamental and significant issue in robotics research, especially for the legged robots, since it is the core technology for robots to complete complex tasks…

Abstract

Purpose

Path planning is a fundamental and significant issue in robotics research, especially for the legged robots, since it is the core technology for robots to complete complex tasks such as autonomous navigation and exploration. The purpose of this paper is to propose a path planning and tracking framework for the autonomous navigation of hexapod robots.

Design/methodology/approach

First, a hexapod robot called Hexapod-Mini is briefly introduced. Then a path planning algorithm based on improved A* is proposed, which introduces the artificial potential field (APF) factor into the evaluation function to generate a safe and collision-free initial path. Then we apply a turning point optimization based on the greedy algorithm, which optimizes the number of turns of the path. And a fast-turning trajectory for hexapod robot is proposed, which is applied to path smoothing. Besides, a model predictive control-based motion tracking controller is used for path tracking.

Findings

The simulation and experiment results show that the framework can generate a safe, fast, collision-free and smooth path, and the author’s Hexapod robot can effectively track the path that demonstrates the performance of the framework.

Originality/value

The work presented a framework for autonomous path planning and tracking of hexapod robots. This new approach overcomes the disadvantages of the traditional path planning approach, such as lack of security, insufficient smoothness and an excessive number of turns. And the proposed method has been successfully applied to an actual hexapod robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2013

Behzad Taheri and Edmond Richer

Autonomous Underwater Vehicles (AUVs) play a crucial role in marine biology research and oceanic natural resources exploration. Since most AUVs are underactuated they require…

Abstract

Purpose

Autonomous Underwater Vehicles (AUVs) play a crucial role in marine biology research and oceanic natural resources exploration. Since most AUVs are underactuated they require sophisticated trajectory planning and tracking algorithms. The purpose of this paper is to develop a new method that allows an underactuated AUV to track a moving object while constraining the approach to a direction tangent to the path of the target. Furthermore, the distance at which the AUV follows the target is constrained, reducing the probability of detection and unwanted behavior change of the target.

Design/methodology/approach

First, a kinematic controller that generates a trajectory tangent to the path of the moving target is designed such that the AUV maintains a prescribed distance and approaches the target from behind. Using a Lyapunov based method the stability of the kinematic controller is proven. Second, a dynamic sliding mode controller is employed to drive the vehicle on the trajectory computed in the first step.

Findings

The kinematic and dynamic controllers are shown to be stable and robust against parameter uncertainty in the dynamic model of the vehicle. Results of numerical simulations for equidistant tracking of a target on both smooth and discontinuous derivatives trajectories for a variety of relative initial positions and orientations are shown.

Originality/value

The contribution of this research is development of a new method for path planning and tracking of moving targets for underactuated AUVs in the horizontal plane. The method allows control of both the direction of approach and the distance from a moving object.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 January 2024

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang and Haibo Ji

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking

Abstract

Purpose

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.

Design/methodology/approach

The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.

Findings

The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.

Originality/value

Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 July 2022

Huaidong Zhou, Pengbo Feng and Wusheng Chou

Wheeled mobile robots (WMR) are the most widely used robots. Avoiding obstacles in unstructured environments, especially dynamic obstacles such as pedestrians, is a serious…

Abstract

Purpose

Wheeled mobile robots (WMR) are the most widely used robots. Avoiding obstacles in unstructured environments, especially dynamic obstacles such as pedestrians, is a serious challenge for WMR. This paper aims to present a hybrid obstacle avoidance method that combines an informed-rapidly exploring random tree* algorithm with a three-dimensional (3D)-object detection approach and model prediction controller (MPC) to conduct obstacle perception, collision-free path planning and obstacle avoidance for WMR in unstructured environments.

Design/methodology/approach

Given a reference orientation and speed, the hybrid method uses parametric ellipses to represent obstacle expansion boundaries based on the 3D target detection results, and a collision-free reference path is planned. Then, the authors build on a model predictive control for tracking the collision-free reference path by incorporating the distance between the robot and obstacles. The proposed framework is a mapless method for WMR.

Findings

The authors present experimental results with a mobile robot for obstacle avoidance in indoor environments crowded with obstacles, such as chairs and pedestrians. The results show that the proposed hybrid obstacle avoidance method can satisfy the application requirements of mobile robots in unstructured environments.

Originality/value

In this study, the parameter ellipse is used to represent the area occupied by the obstacle, which takes the velocity as the parameter. Therefore, the motion direction and position of dynamic obstacles can be considered in the planning stage, which enhances the success rate of obstacle avoidance. In addition, the distance between the obstacle and robot is increased in the MPC optimization function to ensure a safe distance between the robot and the obstacle.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 May 2020

Haojie Zhang, Yudong Zhang and Tiantian Yang

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy…

Abstract

Purpose

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots.

Design/methodology/approach

The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness.

Findings

According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented.

Research limitations/implications

EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study.

Practical implications

The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios.

Originality/value

This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 April 2014

Luca De Filippis, Giorgio Guglieri and Fulvia B. Quagliotti

The purpose of this paper is to present a novel approach for trajectory tracking of UAVS. Research on unmanned aircraft is constantly improving the autonomous flight capabilities…

Abstract

Purpose

The purpose of this paper is to present a novel approach for trajectory tracking of UAVS. Research on unmanned aircraft is constantly improving the autonomous flight capabilities of these vehicles to provide performance needed to use them in even more complex tasks. The UAV path planner (PP) plans the best path to perform the mission. This is a waypoint sequence that is uploaded on the flight management system providing reference to the aircraft guidance, navigation and control system (GNCS). The UAV GNCS converts the waypoint sequence in guidance references for the flight control system (FCS) that, in turn, generates the command sequence needed to track the optimum path.

Design/methodology/approach

A new guidance system (GS) is presented in this paper, based on the graph search algorithm kinematic A* (KA*). The GS is linked to a nonlinear model predictive control (NMPC) system that tracks the reference path, solving online (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with genetic algorithm (GA). The GA finds the command sequence that minimizes the tracking error with respect to the reference path, driving the aircraft toward the desired trajectory. The same approach is also used to demonstrate the ability of the guidance laws to avoid the collision with static and dynamic obstacles.

Findings

The tracking system proposed reflects the merits of NMPC, successfully accomplishing the task. As a matter of fact, good tracking performance is evidenced, and effective control actions provide smooth and safe paths, both in nominal and off-nominal conditions.

Originality value

The GNCS presented in this paper reflects merits of the algorithms implemented in the GS and FCS. As a matter of fact, these two units work efficiently together providing fast and effective control to avoid obstacles in flight and go back to the desired path. KA* was developed from graph search algorithms. Maintaining their simplicity, but improving their search logics, it represents an interesting solution for online replanning. The results show that the GS uploads the collision avoidance path continuously during flight, and it obtains straightforward the reference variables for the FCS, thanks to the KA* model.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 3000