Search results

1 – 10 of 65
Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 March 2024

Rawan Ramadan, Hassan Ghanem, Jamal M. Khatib and Adel M. ElKordi

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Abstract

Purpose

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Design/methodology/approach

In this study, cement pastes were prepared by adding locally produced PA fibers in four different volumes: 0%, 0.5%, 1% and 2% for a duration of 180 days. Bottles and prisms were subjected to chemical shrinkage (CS), drying shrinkage (DS), autogenous shrinkage (AS) and expansion tests. Besides, prism specimens were tested for flexural strength and compressive strength. Furthermore, a mathematical model was proposed to determine the variation length change as function of time.

Findings

The experimental findings showed that the mechanical properties of cement paste were significantly improved by the addition of 1% PA fiber compared to other PA mixes. The effect of increasing the % of PA fibers reduces the CS, AS, DS and expansion of cement paste. For example, the addition of 2% PA fibers reduces the CS, expansion, AS and DS at 180 days by 36%, 20%, 13% and 10%, respectively compared to the control mix. The proposed nonlinear model fit to the experimental data is appropriate with R2 values above 0.92. There seems to be a strong positive linear correlation between CS and AS/DS with R2 above 0.95. However, there exists a negative linear correlation between CS and expansion.

Research limitations/implications

The PA used in this study was obtained from one specific location. This can exhibit a limitation as soil type may affect PA properties. Also, one method was used to treat the PA fibers.

Practical implications

The utilization of PA fibers in paste may well reduce the formation of cracks and limit its propagation, thus using a biomaterial such as PA in cementitious systems can be an environmentally friendly option as it will make good use of the waste generated and enhance local employment, thereby contributing toward sustainable development.

Originality/value

To the authors best knowledge, there is hardly any research on the effect of PA on the volume stability of cement paste. Therefore, the research outputs are considered to be original.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 August 2022

Richard Kwasi Bannor, Bismark Amfo and Helena Oppong-Kyeremeh

With the empirical evidence on the purchase behaviour of tinned tomatoes, food labelling and the safety consciousness of consumers in Ghana were examined.

Abstract

Purpose

With the empirical evidence on the purchase behaviour of tinned tomatoes, food labelling and the safety consciousness of consumers in Ghana were examined.

Design/methodology/approach

Primary data were obtained from 130 consumers. Descriptive statistics, factor analysis and multinomial probit analysis were applied.

Findings

Consumers use tinned tomatoes for cooking because of its easy accessibility in nearby shops, guaranteed constant supply, attractive package, it being affordable/cheaper, its better colour, advertisement/promotion, and longer shelf life. There is a low level of food safety consciousness among consumers since only one-fifth read labels on tinned tomatoes very often, and one-fifth do not read labels at all. Consumers frequently check on tinned tomatoes' most essential information: brand/type, manufacturing and expiry dates, and weight/volume. Age, residential status, contact information, nutritional benefits and affordability influence the choice of retail brand of tinned tomatoes. The health label consumer segment and conventional label consumer segment were identified, with the majority being the former.

Research limitations/implications

The sample size used for the study could be improved in terms of number and geographical coverage. This is because the study was limited to only one main urbanised area in Ghana. Therefore, it will be worthwhile for a further study to be conducted by comparing urban and rural consumers in Ghana and other countries within Africa, to either validate or reveal a different trajectory of consumer behaviour relevant to marketing, policy and practice.

Originality/value

Tomato paste (tinned tomatoes) is consumed in almost all homes in Africa, but there are food scare concerns about tinned tomatoes due to reported cases of adulteration with unhealthy materials such as starch and food colour, leading to negative health implications on consumers. This makes the reading of tinned tomato labels very crucial. Thus, it is of policy relevance to investigate consumers' reading behaviour of label information on tinned tomatoes in Ghana. However, previous studies on food labelling focussed on food and nutrition labelling and implications of food labelling on consumers' purchase behaviour, with most of them outside Africa.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. 14 no. 2
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 April 2024

Manisha Malik, Devyani Tomar, Narpinder Singh and B.S. Khatkar

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Abstract

Purpose

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Design/methodology/approach

Response surface methodology was used to get optimized salt ready-mix based on carbonate salt, disodium phosphate, tripotassium phospahte, sodium hexametaphosphate and sodium chloride. Peak viscosity of flour and yellowness, cooking loss and hardness of noodles were considered as response factors for finding optimized salt formulation.

Findings

The results showed that salts have an important role in governing quality of noodles. Optimum levels of five independent variables of salts, namely, carbonate salt (1:1 mixture of sodium to potassium carbonate), disodium phosphate, sodium hexametaphosphate, tripotassium phosphate and sodium chloride were 0.64%, 0.29%, 0.25%, 0.46% and 0.78% on flour weight basis, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess the effect of different combinations of different salts on the quality of noodles. These findings will also benefit noodle manufacturers, assisting in production of superior quality noodles.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1165

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of 65