Search results

1 – 10 of over 1000
Article
Publication date: 16 March 2015

Yingping Hong, Ting Liang, Pinggang Jia, Wenyi Liu, Qiulin Tan, Chen Li, Tingli Zheng, Binger Ge and Jijun Xiong

Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper…

Abstract

Purpose

Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper proposes a high-temperature pressure measurement system for wireless passive pressure sensors on the basis of inductively coupled LC resonant circuits.

Design/methodology/approach

This paper begins with a general introduction to the high-temperature pressure measurement system, which consists of a reader antenna inductively coupled to the sensor circuit, a readout unit and a heat insulation unit. The design and fabrication of the proposed measurement system are then described in detail.

Findings

A wireless passive pressure sensor without an air channel is fabricated using high-temperature co-fired ceramics (HTCC) technology and its signal is measured by the designed measurement system. The designed heat insulation unit keeps the reader antenna in a safe environment of 159.5°C when the passive sensor is located in a 900°C high-temperature zone continuously for 0.5 h. The proposed system can effectively detect the sensor’s resonance frequency variation in a high bandwidth from 1 to 100 MHz with a frequency resolution of 0.006 MHz, tested from room temperature to 500°C for 30 min.

Originality/value

Expensive and bulky equipment (impedance analyzers or network analyzers) restrict the use of the readout method outside the laboratory environment. This paper shows that a novel readout circuit can replace the laboratory equipment to demodulate the measured pressure by extracting the various sensors’ resonant frequency. The proposed measurement system realizes automatic and continuous pressure monitoring in a high-temperature environment with a coupled distance of 2.5 cm. The research finding is meaningful for the measurement of passive pressure sensors under a wide temperature range.

Article
Publication date: 8 December 2017

YanJie Guo, QiuLin Tan, Fei Lu, GuoZhu Wu and Lei Zhang

This paper aims to present a novel wireless passive pressure sensor based on an aperture coupled microstrip patch antenna embedded with an air cavity for pressure measurement.

291

Abstract

Purpose

This paper aims to present a novel wireless passive pressure sensor based on an aperture coupled microstrip patch antenna embedded with an air cavity for pressure measurement.

Design/methodology/approach

In this paper, the sensitive membrane deformed when pressure was applied on the surface of the sensor and the relative permittivity of the mixed substrate changed, resulting in a change in the center frequency of the microstrip antenna. The size of the pressure sensor is determined by theoretical calculation and software simulation. Then, the sensor is fabricated separately as three layers using printed circuit board technology and glued together at last. The pressure test of the sensor is carried out in a sealed metal tank.

Findings

The extracted resonant frequency was found to monotonically shift from 2.219 to 1.974 GHz when the pressure varied from 0 to 300 kPa, leading to an average absolute sensitivity of 0.817 MHz/kPa.

Research limitations/implications

This pressure sensor proposed here is mainly to verify the feasibility of this wireless passive maneuvering structure, and when the base material of this structure is replaced with some high-temperature-resistant material, the sensor can be used to measure the pressure inside the aircraft engine.

Originality/value

The sensor structure proposed here can be used to test the pressure in a high-temperature environment when the base material is replaced with some high-temperature-resistant material.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Tanyong Wei, Qiulin Tan, Tao Luo, Guozhu Wu, Shun Tang, Dan-Dan Shen, Chen Li and Jijun Xiong

The purpose of this paper is to propose a pressure-, temperature- and acceleration-sensitive structure-integrated inductor-capacitor (LC) resonant ceramic sensor to fulfill the…

Abstract

Purpose

The purpose of this paper is to propose a pressure-, temperature- and acceleration-sensitive structure-integrated inductor-capacitor (LC) resonant ceramic sensor to fulfill the measurement of multi-parameters, such as the measurement of pressure, temperature and acceleration, simultaneously in automotive, aerospace and aeronautics industries.

Design/methodology/approach

The ceramic-based multi-parameter sensor was composed of three LC tanks, which have their resonant frequencies sensitive to pressure, temperature and acceleration separately. Two aspects from the specific sensitive structure design to the multiple signals reading technology are considered in designing the multi-parameter ceramic sensor. Theoretical analysis and ANSYS simulation are used in designing the sensitive structure, and MATLAB simulation and experiment are conducted to verify the feasibility of non-coverage of multi-readout signals.

Findings

It is found that if the parameters of sensitive structure and layout of the LC tanks integrated into the sensor are proper, the implementation of a multi-parameter sensor could be feasible.

Practical implications

The ceramic sensor proposed in the paper can measure pressure, temperature and acceleration simultaneously in harsh environments.

Originality/value

The paper creatively proposes a pressure-, temperature- and acceleration-sensitive structure-integrated LC resonant ceramic sensor for harsh environments and verifies the feasibility of the sensor from sensitive structure design to multiple-signal reading.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 July 2006

Robert Bogue

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

1375

Abstract

Purpose

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

Design/methodology/approach

This paper describes the early development of the automotive sensor industry and gives examples of present‐day applications. It subsequently discusses development in advanced vehicle safety systems.

Findings

The advent of cost‐effective electronics in 1970 led to the development of numerous automotive systems such as electronic engine management which use a diversity of sensors. Since, the 1990s, safety has emerged as a major consideration and features such as traction control, ABS, stability control systems and air bags have been applied across a wide sector of the industry. New active safety systems which respond to passenger weight and position, as well as collision avoidance systems which can sense the vehicle's external environment are being developed and applied widely. These are fuelling the automotive sensor market which is forecast to reach 2.24 billion units per annum by 2010.Safety system integration is a major theme of present developments.

Originality/value

This paper shows that customer demands for enhanced safety have driven the development and rapid adoption of advanced vehicle safety systems. This has boosted the markets for automotive sensors.

Details

Sensor Review, vol. 26 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2002

Marko Pavlin, Darko Belavic, Marina Santo Zarnik, Marko Hrovat and Matej Mozek

Pressuresensor miniaturization requires high‐density packaging. This means that designers are constantly faced with all kinds of challenging, and sometimes impossible…

Abstract

Pressuresensor miniaturization requires high‐density packaging. This means that designers are constantly faced with all kinds of challenging, and sometimes impossible, requirements. In this paper we will present three examples with specific technologies and aspects of miniaturization and packaging. The first example is a pressure switch, the second a pressure sensor and the third a smart pressure sensor.

Details

Microelectronics International, vol. 19 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 January 2020

Yuxi Yu, Bin Han and Fansen Xia

This paper aims to present wireless passive temperature sensors by using high-temperature stable polymer-derived silicoaluminum carbonitride (PDC-SiAlCN) ceramic materials.

Abstract

Purpose

This paper aims to present wireless passive temperature sensors by using high-temperature stable polymer-derived silicoaluminum carbonitride (PDC-SiAlCN) ceramic materials.

Design/methodology/approach

In this paper, a novel PDC-SiAlCN ceramic was synthesized by using polyvinylsilazne and aluminum-tri-sec-butoxide as precursors. Then, PDC-SiAlCN was used as the sensing material to fabricate sensors. The sensors are based on a cavity resonator and an integrated slot antenna. The resonant frequencies of the sensors are determined by the dielectric constants of PDC-SiAlCN ceramic, which monotonically increase versus temperature.

Findings

The effect of sensor dimension on the performance of the sensors was investigated using simulation and experimental methods. The using temperature, reliability and sensing distance of the sensors were studied experimentally. The sensors performed measurement up to 1100°C with excellent reliability and repeatability. The sensing distance varied from 38 to 14 mm when the temperature increasing from 20°C to 1100°C.

Originality/value

PDC-SiAlCN ceramic based wireless passive temperature sensors have the advantage of seamless integration of slot antennas and resonators, which greatly reduces the size of the sensor, reduces the direction of antenna transmission and increases the transmission space. The sensors can be used for many harsh environment applications such as engine monitoring.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2020

Guanzheng Wu, Siming Li, Jiayu Hu, Manchen Dong, Ke Dong, Xiuliang Hou and Xueliang Xiao

This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of…

Abstract

Purpose

This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor.

Design/methodology/approach

Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated.

Findings

The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure.

Research limitations/implications

The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc.

Originality/value

The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2189

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 May 2016

Daniela Diaz-Alonso, Mario Moreno-Moreno, Carlos Zuñiga, Joel Molina, Wilfrido Calleja, Juan Carlos Cisneros, Luis Niño de Rivera, Volodymir Ponomaryov, Felix Gil, Angel Guillen and Efrain Rubio

This paper aims to purpose the new design and fabrication scheme of Touch Mode Capacitive Pressure Sensor (TMCPS), which can be used in a wireless integrated resistor, inductor…

Abstract

Purpose

This paper aims to purpose the new design and fabrication scheme of Touch Mode Capacitive Pressure Sensor (TMCPS), which can be used in a wireless integrated resistor, inductor and capacitor circuit for monitoring pressure in biomedical applications.

Design/methodology/approach

This study focuses on the design, simulation and fabrication of dynamic capacitors, based on surface micromachining using polysilicon or aluminum films as the top electrode, both structural materials are capped with a 1.5 μm-thick polyimide film.

Findings

The design of microstructures using a composite model fits perfectly the preset mechanical behavior. After the full fabrication, the dynamic capacitors show complete mechanical flexibility and stability.

Originality/value

The novelty of the method presented in this study includes two important aspects: first, the capacitors are designed as a planar cavity within a rigid frame, where two walls contain channels which allow for the etching of the sacrificial material. Second, the electromechanical structures are designed using a composite model that includes a polyimide film capping for a precise pressure sensing, which also protects the internal cavity and, at the same time, provides full biocompatibility.

Details

Microelectronics International, vol. 33 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 1000