Search results

1 – 10 of over 11000
Article
Publication date: 13 June 2019

Abdulmajeed Mohamad, Mikhail A. Sheremet, Jan Taler and Paweł Ocłoń

Natural convection in differentially heated enclosures has been extensively investigated due to its importance in many industrial applications and has been used as a benchmark…

Abstract

Purpose

Natural convection in differentially heated enclosures has been extensively investigated due to its importance in many industrial applications and has been used as a benchmark solution for testing numerical schemes. However, most of the published works considered uniform heating and cooling of the vertical boundaries. This paper aims to examine non-uniform heating and cooling of the mentioned boundaries. The mentioned case is very common in many electronic cooling devices, thermal storage systems, energy managements in buildings, material processing, etc.

Design/methodology/approach

Four cases are considered, the left-hand wall’s temperature linearly decreases along the wall, while the right-hand wall’s temperature is kept at a constant, cold temperature. In the second case, the left-hand wall’s temperature linearly increases along the wall, while the right-hand wall’s temperature is kept a constant, cold temperature. The third case, the left-hand wall’s temperature linearly decreases along the wall, while the right-hand wall’s temperature linearly increases along the wall. In the fourth case, the left-hand and the right-hand walls’ temperatures decrease along the wall, symmetry condition. Hence, four scenarios of natural convection in enclosures were covered.

Findings

It has been found that the average Nusselt number of the mentioned cases is less than the average Nusselt number of the uniformly heated and cooled enclosure, which reflects the physics of the problem. The work quantifies the deficiency in the rate of the heat transfer. Interestingly one of the mentioned cases showed two counter-rotating horizontal circulations. Such a flow structure can be considered for passively, highly controlled mechanism for species mixing processes application.

Originality/value

Previous works assumed that the vertical boundary is subjected to a constant temperature or to a sinusoidal varying temperature. The subject of the work is to examine the effect of non-uniformly heating and/or cooling vertical boundaries on the rate of heat transfer and flow structure for natural convection in a square enclosure. The temperature either linearly increases or decreases along the vertical coordinate at the boundary. Four scenarios are explored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Salman Arshad, Bo Kong, Alan Kerstein and Michael Oevermann

The purpose of this numerical work is to present and test a new approach for large-scale scalar advection (splicing) in large eddy simulations (LES) that use the linear eddy…

Abstract

Purpose

The purpose of this numerical work is to present and test a new approach for large-scale scalar advection (splicing) in large eddy simulations (LES) that use the linear eddy sub-grid mixing model (LEM) called the LES-LEM.

Design/methodology/approach

The new splicing strategy is based on an ordered flux of spliced LEM segments. The principle is that low-flux segments have less momentum than high-flux segments and, therefore, are displaced less than high-flux segments. This strategy affects the order of both inflowing and outflowing LEM segments of an LES cell. The new splicing approach is implemented in a pressure-based fluid solver and tested by simulation of passive scalar transport in a co-flowing turbulent rectangular jet, instead of combustion simulation, to perform an isolated investigation of splicing. Comparison of the new splicing with a previous splicing approach is also done.

Findings

The simulation results show that the velocity statistics and passive scalar mixing are correctly predicted using the new splicing approach for the LES-LEM. It is argued that modeling of large-scale advection in the LES-LEM via splicing is reasonable, and the new splicing approach potentially captures the physics better than the old approach. The standard LES sub-grid mixing models do not represent turbulent mixing in a proper way because they do not adequately represent molecular diffusion processes and counter gradient effects. Scalar mixing in turbulent flow consists of two different processes, i.e. turbulent mixing that increases the interface between unmixed species and molecular diffusion. It is crucial to model these two processes individually at their respective time scales. The LEM explicitly includes both of these processes and has been used successfully as a sub-grid scalar mixing model (McMurtry et al., 1992; Sone and Menon, 2003). Here, the turbulent mixing capabilities of the LES-LEM with a modified splicing treatment are examined.

Originality/value

The splicing strategy proposed for the LES-LEM is original and has not been investigated before. Also, it is the first LES-LEM implementation using unstructured grids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 August 2021

Francisco Sastre, Elena B. Martin, Angel Velazquez and Abderrahmane Baïri

This paper aims to compare the performance of flow pulsation versus flow stirring in the context of mixing of a passive scalar at moderate Reynolds numbers in confined flows. This…

Abstract

Purpose

This paper aims to compare the performance of flow pulsation versus flow stirring in the context of mixing of a passive scalar at moderate Reynolds numbers in confined flows. This comparison has been undertaken in two limits: diffusion can be neglected as compared to convection (very large Peclet) and diffusion and convection effects are comparable. The comparison was performed both in terms of global parameters: pumping power and mixing efficiency and local flow topology.

Design/methodology/approach

The study has been addressed by setting up a common conceptual three-dimensional problem that consisted of the mixing of two parallel streams in a square section channel past a square section prism. Stirring and pulsation frequencies and amplitudes were changed and combined at an inlet Reynolds number of 200. The numerical model was solved using a finite volume formulation by adapting a series of open-source OpenFOAM computational fluid dynamic (CFD) libraries. For cases with flow pulsation, the icoFoam solver for laminar incompressible transient flows was used. For cases with stirring, the icoDyMFoam solver, which uses the arbitrary Lagrangian–Eulerian method for the description of the moving dynamical mesh, was used to model the prism motion. At the local flow topology level, a new method was proposed to analyze mixing. Time evolution of folding and wrinkling of sheets made up of virtual particles that travel along streak lines was quantified by generating lower rank projections of the sheets onto the spaces spanned by the main eigenvectors of an appropriate space-temporal data decomposition.

Findings

In the limit when convection is dominant, the results showed the superior performance of stirring versus flow pulsation both in terms of mixing and required pumping power. In the cases with finite Peclet, the mixing parameters by stirring and flow pulsation were comparable, but pulsation required larger pumping power than stirring. For some precise synchronization of stirring and pulsation, the mixing parameter reached its maximum, although at the expense of higher pumping power. At the local flow topology level, the new method proposed to quantify mixing has been found to correlate well with the global mixing parameter.

Originality/value

A new systematic comparative study of two methods, stirring and pulsation, to achieve mixing of passive scalars in the mini scale for confined flows has been presented. The main value, apart from the conclusions, is that both methods have been tested against the same flow configuration, which allows for a self-consistent comparison. Of particular interest is the fact that it has been found that accurate synchronization of both methods yields mixing parameters higher than those associated to both methods taken separately. This suggests that it is possible to synchronize mixing methods of a different nature to achieve optimum designs. The new theoretical method that has been proposed to understand the mixing performance at the local level has shown promising results, and it is the intention of the authors to test its validity in a broader range of flow parameters. All these findings could be taken as potential guidelines for the design of mixing processes in the mini scale in the process industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2018

Xueye Chen, Jienan Shen and Zengliang Hu

The purpose of this study is to provide a micromixer for achieving effective mixing of two liquids. The mixing of two liquids is difficult to achieve in microfluidic chips because…

Abstract

Purpose

The purpose of this study is to provide a micromixer for achieving effective mixing of two liquids. The mixing of two liquids is difficult to achieve in microfluidic chips because they cannot form turbulence at small dimensions and velocities.

Design/methodology/approach

In this paper, four kinds of passive micromixers based on splitting–recombination and chaotic convection are compared. First, a better E-shape mixing unit based on the previous F-shape mixing unit has been designed. Then, the E-shape mixing units are further combined to form three micromixers (i.e. E-mixer, SESM and FESM).

Findings

Finally, the mixing experimental results show that the mixing indexes of E-mixer, SESM and FESM are more than those of F-mixer when the Reynolds number range is from 0.5 to 100. And at Re = 15, the lowest mixing index of E-mixer is 71%, which is the highest of the four micromixers.

Originality/value

At Re = 80, the highest mixing index of F-mixer and E-mixer is 92 and 94 per cent, respectively, and then it begins to decrease. But the mixing index of SESM and FESM remains close to 100 per cent.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 August 2021

Mojtaba Zeraatkar, Marco Donato de Tullio, Alessio Pricci, Francesco Pignatelli and Gianluca Percoco

The purpose of this study is to introduce an alternative construction for microfluidic micromixers, where the effect of the extruded filaments in the fused deposition modeling…

Abstract

Purpose

The purpose of this study is to introduce an alternative construction for microfluidic micromixers, where the effect of the extruded filaments in the fused deposition modeling (FDM) technique is used to enhance mixing performance identified as a challenge in microfluidic micromixers.

Design/methodology/approach

A simple Y-shaped micromixer was designed and printed using FDM technique. Experimental and numerical studies were conducted to investigate the effect of the extruded filaments on the flow behavior. The effects of the extruded width (LW), distance between adjacent filaments (b) and filament height (h1) are investigated on the mixing performance and enhancing mixing in the fabricated devices. The performance of fabricated devices in mixing two solutions was tested at flow rates of 5, 10, 20, 40, 80 and 150 µL/min.

Findings

The experimental results showed that the presence of geometrical features on microchannels, because of the nature of the FDM process, can act as ridges and generate a lateral transform through the transverse movement of fluids along the groove. The results showed the effect of increasing ridge height on the transverse movement of the fluids and, therefore, chaotic mixing over the ridges. In contrast, in the shallow ridge, diffusion is the only mechanism for mixing, which confirms the numerical results.

Originality/value

The study presents an exciting aspect of FDM for fabrication of micromixers and enhance mixing process. In comparison to other methods, no complexity was added in fabrication process and the ridges are an inherent property of the FDM process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2022

Elena B. Martin, Francisco Sastre, Angel Velazquez and Abderrahmane Baïri

This paper aims to study the influence that the second invariant of the rate-of-strain tensor of a power law polymeric fluid (aqueous solution of hydroxyethyl cellulose [HEC]) has…

Abstract

Purpose

This paper aims to study the influence that the second invariant of the rate-of-strain tensor of a power law polymeric fluid (aqueous solution of hydroxyethyl cellulose [HEC]) has on convective mixing performance downstream of a 3D confined oscillating prism. Newtonian and non-Newtonian Reynolds numbers, the mass concentration of HEC and prism oscillation frequency were varied.

Design/methodology/approach

A conceptual problem was designed. Its objective was to analyze the convective mixing of two adjacent flow streams when they pass around a moving confined prism. The rectangular prism had a square section, and its sinusoidal motion was prescribed inside a channel with a square section too. OpenFOAM libraries were used to simulate the flow field. Regarding prism motion, the icoDyMFoam solver was used. The problem was analyzed both at the global level (mixing parameter) and local level (detailed flow topology).

Findings

For constant Reynolds number, increasing mass concentrations of HEC (in the range from 0.2% to 0.5%) led to better mixing parameters. The improvement was linked to the effect that the second invariant of the rate-of-strain tensor had on flow topology. It was found that mixing is maximum when the prism motion and its wake (the frequency of the first instability) are synchronized. In practical terms, this means that the optimum stirring frequency does not need to be very high; it suffices that it ensures that synchronization occurs. The dominant vorticity shedding pattern found was the so-called 2P mode. However, a significant difference was found when compared to the free-stream situation. While in the former, the two vorticity regions that make up the 2P pair come from the prism, in the present confined case, one came from the prism, and the other came from the wall. Another difference was that in the present case, the 2P pairs were much more elongated than in the free stream case, and this had a significant influence on the stretching and bending of streak lines and, therefore, on mixing.

Practical implications

The study that has been presented has a practical industrial implication for the processes industry because it provides guidelines to design active mixers that deal with aqueous power law polymeric solutions. In parallel, it opens up some new research lines in the direction of studying whether the mixing concept might be modified so as to develop a fully passive system that could be far simpler and, possibly, more attractive to industry.

Originality/value

The originality and value of the study are associated to the systematic approach that has been followed. It has allowed to establish a clear pattern regarding the active mixing behavior of HEC solutions in confined flows. To the best of authors’ knowledge, this could be the first study of this type in the literature. Also, the study has contributed to understand the vorticity shedding patterns that appear in these types of problems and how they shape wake topology and, consequently, mixing performance. The finding that optimum mixing requires synchronization of stirring motion frequency and wake first natural frequency of instability may help to improve the design and operation of industrial mixers dealing with polymeric aqueous solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2019

Asghar Noormohammadi and Bing-Chen Wang

This paper aims to study turbulent dispersion of a passive plume emitting from a single elevated line source of different elevations in a plane channel flow by using direct…

100

Abstract

Purpose

This paper aims to study turbulent dispersion of a passive plume emitting from a single elevated line source of different elevations in a plane channel flow by using direct numerical simulation (DNS).

Design/methodology/approach

The investigation was conducted in both physical and spectral spaces, which includes an analysis of statistical moments and pre-multiplied spectra of the velocity and concentration fields. The pre-multiplied power spectra of the velocity and concentration fields are compared to identify the transition of the plume development from the turbulent convective stage to the turbulent diffusive stage.

Findings

It is observed that due to the presence of wall shear, the mean plume drifts toward the wall for the near-wall source release case. It is also observed that streamwise development of the plume is sensitive to both the source elevation and the downstream distance from the source. For the line source placed near the center of the channel, the plume development is dominated by the bulk meandering effects. However, for the plume emitting from the near-wall line source, it hits the ground soon after its release and becomes dominated by the wall shear. As the downstream distance from the line source increases, the streamwise development of the plume released from the near-wall line source transitions from a turbulent convective stage to a turbulent diffusive stage.

Originality/value

This paper represents an original DNS study of turbulent mixing and dispersion of a passive plume emitting from a line source of different elevations in a wall-bounded flow. This paper proposes a practical method to identify the transition of the plume development from the turbulent convective to the turbulent diffusive stages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2020

Ahamed Saleel C., Asif Afzal, Irfan Anjum Badruddin, T.M. Yunus Khan, Sarfaraz Kamangar, Mostafa Abdelmohimen, Manzoore Elahi M. Soudagar and H. Fayaz

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface…

Abstract

Purpose

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface roughness and wall surface or zeta potential. Due to zeta potential, an electrical double layer (EDL) is formed in the vicinity of the wall surface, namely, the stern layer (layer of immobile ions) and diffuse layer (layer of mobile ions). Hence, its competent designs demand more efficient micro-scale mixing mechanisms. This paper aims to therefore carry out numerical investigations of electro osmotic flow and mixing in a constricted microchannel by modifying the existing immersed boundary method.

Design/methodology/approach

The numerical solution of electro-osmotic flow is obtained by linking Navier–Stokes equation with Poisson and Nernst–Planck equation for electric field and transportation of ion, respectively. Fluids with different concentrations enter the microchannel and its mixing along its way is simulated by solving the governing equation specified for the concentration field. Both the electro-osmotic effects and channel constriction constitute a hybrid mixing technique, a combination of passive and active methods. In microchannels, the chief factors affecting the mixing efficiency were studied efficiently from results obtained numerically.

Findings

The results indicate that the mixing efficiency is influenced with a change in zeta potential (ζ), number of triangular obstacles, EDL thickness (λ). Mixing efficiency decreases with an increment in external electric field strength (Ex), Peclet number (Pe) and Reynolds number (Re). Mixing efficiency is increased from 28.2 to 50.2% with an increase in the number of triangular obstacles from 1 to 5. As the value of Re and Pe is decreased, the overall percentage increase in the mixing efficiency is 56.4% for the case of a mixing micro-channel constricted with five triangular obstacles. It is also vivid that as the EDL overlaps in the micro-channel, the mixing efficiency is 52.7% for the given zeta potential, Re and Pe values. The findings of this study may be useful in biomedical, biotechnological, drug delivery applications, cooling of microchips and deoxyribonucleic acid hybridization.

Originality/value

The process of mixing in microchannels is widely studied due to its application in various microfluidic devices like micro electromechanical systems and lab-on-a-chip devices. Hence, its competent designs demand more efficient micro-scale mixing mechanisms. The present study carries out numerical investigations by modifying the existing immersed boundary method, on pressure-driven electro osmotic flow and mixing in a constricted microchannel using the varied number of triangular obstacles by using a modified immersed boundary method. In microchannels, the theory of EDL combined with pressure-driven flow elucidates the electro-osmotic flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1989

C.D. Holder

With the increased functional density requirements of military avionics it is impossible to meet these demands without utilising Surface Mount Technology. The Electronics…

72

Abstract

With the increased functional density requirements of military avionics it is impossible to meet these demands without utilising Surface Mount Technology. The Electronics Manufacturing Technology Group at Boeing Military Airplanes is working to meet SMT design requirements through research and development of processes, materials and equipment for all variations of SMT. Basic processes have been established for both 100% SMT and mixed technology. However, the Group continues to advance its capabilities by evaluating and improving all aspects of SMT manufacturing. A description of the initial thrust into Type III SMT as well as subsequent development is given. This includes a description of the evaluation of Surface Mount Component (SMC) attach adhesives comparing the adhesive used initially with others available by examining the various criteria involved in selecting the appropriate one for a given process. Also, a discussion follows of factors involved in determination of Mil‐spec. passive SMCs which are compatible with wave soldering. Included in the evaluation of passive SMCs is a comparison of the compatibility of the wave solder system in use with the component industry's recommended temperature profiles through an analysis based on in‐house testing to determine the actual component endurance to solder system heating. Throughout this discussion emphasis is placed on a systematic guided approach to examining process development.

Details

Soldering & Surface Mount Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 March 1997

M. Konstantinov

Presents the numerical investigations of interaction of several coaxial vortex rings in inviscid fluid. For the solution of non‐linear system of ordinary differential equations…

Abstract

Presents the numerical investigations of interaction of several coaxial vortex rings in inviscid fluid. For the solution of non‐linear system of ordinary differential equations chooses the method of extrapolation with variable step and order. Controls the accuracy of calculations by the conditions of conservation of the first integrals and also by the comparison of numerical results with the known analytical solutions. Discusses the problems of order and chaos, and presents examples of mixing of fluid particles by interaction of two and three vortex rings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 11000