Search results

1 – 10 of 12
Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…

Abstract

Purpose

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.

Design/methodology/approach

During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.

Findings

The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.

Originality/value

The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Abstract

Details

Time of Death
Type: Book
ISBN: 978-1-80455-006-9

Book part
Publication date: 19 March 2024

Graham S. Steele

Cryptocurrency arose, and grew in popularity, following the financial crisis of 2008 built upon a promise of decentralizing money and payments. An examination of the history of…

Abstract

Cryptocurrency arose, and grew in popularity, following the financial crisis of 2008 built upon a promise of decentralizing money and payments. An examination of the history of money and banking in the United States demonstrates that stable money benefits from strict controls and commitments by a centralized government through chartering restrictions and a broad safety net, rather than decentralization. In addition, financial crises happen when the government allows money creation to occur outside of official channels. The US central bank is then forced into a policy of supporting a range of money-like assets in order to maintain a grip on monetary policy and some semblance of financial stability.

In addition, this chapter argues that cryptocurrency as a form of shadow money shares many of the problematic attributes of both the privately issued bank notes that created instability during the “free banking” era and the “shadow banking” activities that contributed to the 2008 crisis. In this sense, rather than being a novel and disruptive idea, cryptocurrency replicates many of the systemically destabilizing aspects of privately issued money and money-like instruments.

This chapter proposes that, rather than allowing a new, digital “free banking” era to emerge, there are better alternatives. Specifically, it argues that the Federal Reserve (Fed) should use its tools to improve public payment systems, enact robust utility-like regulations for private digital currencies and limit the likelihood of bubbles using prudential measures.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Article
Publication date: 15 September 2023

Kaushal Jani

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither…

19

Abstract

Purpose

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles.

Design/methodology/approach

Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study.

Findings

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Originality/value

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 27 March 2024

Jianhui Jian, Haiyan Tian, Dan Hu and Zimeng Tang

With the growing concern of various sectors of society regarding environmental issues and the promotion of sustainable development, green technology innovation is generally…

Abstract

Purpose

With the growing concern of various sectors of society regarding environmental issues and the promotion of sustainable development, green technology innovation is generally considered to be conducive to the long-term development of enterprises. However, because of the existence of agency problems, managers may have shortsighted behaviors. Then how will managers' shortsighted behaviors affect enterprises' green technology innovation?

Design/methodology/approach

This paper uses machine learning-based text analysis methods to construct a manager myopia index based on the data from A-share listed companies on the Shanghai and Shenzhen Stock Exchanges from 2015 to 2020. We examine the impact of manager myopia on green technology innovation in companies.

Findings

Our study finds that manager myopia significantly inhibits green technology innovation in companies. However, when multiple large shareholders coexist and the proportion of institutional investors' holdings is high, it can alleviate the inhibitory effect of manager myopia on green innovation. Heterogeneity tests show that the impact of manager myopia on green technology innovation is relatively significant in non-state-owned and manufacturing companies, as well as in the electricity industry. Robustness tests demonstrate that our conclusions remain valid after using propensity score matching to eliminate endogeneity problems.

Originality/value

From the perspective of corporate governance, this paper incorporates managers' shortsightedness, multiple large shareholders and institutional investors' shareholding ratios into the same logical framework, analyzes their internal mechanisms, helps improve corporate governance, enhances green innovation capabilities and has strong implications for the implementation of national innovation-driven development strategies and the achievement of “carbon peak” and “carbon neutrality” targets.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 December 2022

Galym Tokazhanov, Serik Tokbolat, Aidana Tleuken and Ferhat Karaca

The current COVID-19 pandemic is influencing our life in every aspect, including working and living environments. Millions of people were forced to isolate themselves in their…

Abstract

Purpose

The current COVID-19 pandemic is influencing our life in every aspect, including working and living environments. Millions of people were forced to isolate themselves in their homes, which has posed significant pressure on buildings and shown us that our dwellings are not designed for such purposes. This is partly due to the fact that homes are designed and built for occasional use rather than isolated and long-term occupation. The legislative system of a country plays an important role in defining and shaping the conditions of people living there. Hence, the aim of the study is to evaluate the readiness of Kazakhstani and the EU construction-related legislation for pandemics.

Design/methodology/approach

Previously developed pandemic-resilient indicators were used for the evaluation of construction legislation. Both legislative systems were reviewed, and the quality of responses was evaluated by assigning response scores.

Findings

The results based on response scores indicate that the environmental resource consumption sub-category was better covered by EU legislation. At the same time, the buildings’ health, safety and comfort are better taken into account in Kazakhstani legislation. Seven pandemic-resilient indicators were not responded to by any legislative system indicating a gap between current legislation and requirements for new living conditions.

Originality/value

No study has analyzed how COVID-19 can transform construction legislation. The study reveals the limitation of current construction legislation in Kazakhstan (KZ) and the EU, indicating the need for transformation to meet the requirements of the pandemic era.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 12