Search results

1 – 10 of over 1000
Article
Publication date: 7 September 2023

Jakub Šejna, Stanislav Šulc, Vít Šmilauer, Pavel Reiterman and František Wald

The aim of this paper is to determine the thermal conductivity of a protective layer of alkali-activated cement and the possibility of performing fire protection with fireclay…

Abstract

Purpose

The aim of this paper is to determine the thermal conductivity of a protective layer of alkali-activated cement and the possibility of performing fire protection with fireclay sand and Lightweight mortar. Unprotected steel structures have generally low fire resistance and require surface protection. The design of passive protection of a steel element must consider the service life of the structure and the possible need to replace the fire protection layer. Currently, conventional passive protection options include intumescent coatings, which are subject to frequent inspection and renewal, gypsum and cement-based fire coatings and gypsum and cement board fire protection.

Design/methodology/approach

Alkali-activated cements provide an alternative to traditional Portland clinker-based materials for specific areas. This paper presents the properties of hybrid cement, its manufacturability for conventional mortars and the development of passive fire protection. Fire experiments were conducted with mortar with alkali-activated and fireclay sand and lightweight mortar with alkali-activated cement and expanded perlite. Fire experiment FE modelling.

Findings

The temperatures of the protected steel and the formation of cracks in the protective layer were investigated. Based on the experiments, the thermal conductivities of the two protective layers were determined. Conclusions are presented on the applicability of alkaline-activated cement mortars and the possibilities of applicability for the protection of steel structures. The functionality of the passive fire layer was confirmed and the strengths of the mortar used were determined. The use of alkali-activated cements was shown to be a suitable option for sustainable passive fire protection of steel structures.

Originality/value

Eco-friendly fire protection based on hybrid alkali-activated cement of steel members.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 May 2023

Jakub Šejna, Patrik Dobrovolný and František Wald

This paper provides a summary of the issues in the passive fire protection of steel structures. Types of passive fire protection and the material properties of protection members…

Abstract

Purpose

This paper provides a summary of the issues in the passive fire protection of steel structures. Types of passive fire protection and the material properties of protection members and steel members are described. The paper deals with the possibility of partial fire protection for secondary steel beams, in cases where, due to possible membrane action, it is not necessary to apply passive protection to the entire beams.

Design/methodology/approach

Studies of partially fire-protected steel structures are compared, and results from studies with different input data are summarized. A fire experiment was conducted to investigate the effect of partial passive protection in a small-scale furnace. Based on the findings of the experiment, numerical models were prepared using Ansys Mechanical.

Findings

The results are summarized, and a partial fire protection length of 500 mm is recommended. Various partial fire protection lengths were compared, and the temperature development of the steel contactors was compared using a protection length of 500 mm. At the end of the paper, options for partial passive protection of steel beams are presented.

Originality/value

Extended paper from ASFE2021 based on selection.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 February 1993

Ron Smith

Considers some of the major spheres of influence which can affectthe design of the passive fire protection of a building and outlinespassive fire protection materials and…

Abstract

Considers some of the major spheres of influence which can affect the design of the passive fire protection of a building and outlines passive fire protection materials and applications, fire tests, Building Regulations and the possible influence of European legislation. Discusses the five major requirements relating to fire which must be met when designing a building. Details the use of sprays, boards, intumescents, performed sections, fire barrier ′quilts′ or ′blankets′ and penetration seals and firestops. Explains the British Standard fire tests and provides reactions to them. Summarizes building control regulations, with reference to The Building Regulations 1991, recent developments and European aspects.

Details

Structural Survey, vol. 11 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

87663

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 18 March 2014

Peter Scott

The British Standards and the Eurocodes both cover the design of steel structures in fire. These provide designers with the opportunity to exploit the properties of structural…

Abstract

The British Standards and the Eurocodes both cover the design of steel structures in fire. These provide designers with the opportunity to exploit the properties of structural steel to its maximum capacity in the fire limit state, termed Structural Fire Engineering. This allows fire protection measures to be integrated into structural design as part of the passive fire protection specification. If used effectively in the specification process it can bring significant benefits to the project, including robust and safe designs, quantified structural performance and cost savings.

The suitability of a member in a structural design is generally governed by serviceability limitations such as deflection. Generally this approach provides a conservative working stress for the steel sections of approximately 50% of their overall capacity. Within the UK, this simplified approach led to the development of prescribed limiting steel temperatures of 550°C for columns and 620°C for beams.

Best-practice industry guidance published in the UK encourages designers to specify a limiting steel temperature together with the fire resistance period as part of the overall steelwork specification. Passive fire protection is generally specified post design-stage at a contractor or applicator level and sometimes very little is known about the limiting steel temperature.

This paper provides an overview of the fire protection specification and provides advice on structural fire engineering to determine a limiting steel temperature and the benefits that can be gained from doing so. The paper highlights how supplier expertise in fire engineering approaches and product performance knowledge can bring value to a design and play an important role in providing safe, cost effective and compliant solutions.

Details

Journal of Structural Fire Engineering, vol. 5 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 April 2022

Matt Ghiji, Paul Joseph and Maurice Guerrieri

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures…

326

Abstract

Purpose

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. Here, the main thrust is placed on the spalling phenomenon of concrete elements when exposed to elevated temperatures and fires.

Design/methodology/approach

In this context, it has been long established that prolonged thermal insult on concrete members will lead to egress of water, both physically bound as well as those present as water of hydration within the concrete matrix, in the form of steam through microchannels and associated pathways of least resistance, often resulting in the flaking of the surface of the structure. The latter process can ultimately lead to the exposure of the ferrous-based reenforcement elements, for instance, to higher temperatures, thus inducing melting. This, in turn, can result in substantial loss of strength and load-bearing capacity of the structural element that is already undergoing disintegration of its base matrix owing to heat/fire. Even though spalling of concrete structures has long been recognized as a serious problem that can often lead to catastrophic failure of infrastructures, such as buildings, bridges and tunnels, the utility of intumescent coating as a mitigation strategy is relatively new and has not been explored to its fullest possible extent. Therefore, in the latter parts of the review, the authors have endeavored to discuss the different types of intumescent coatings, their modes of actions and, in particular, their wider applicability in terms of protecting concrete elements from detrimental effects of severe or explosive spalling.

Findings

Given that spalling of concrete components is still a very serious issue that can result in loss of lives and destruction of critical infrastructures, there is an urgent need to formulate better mitigating strategies, through novel means and methods. The use of the intumescent coating in this context appears to be a promising way forward but is one that seems to be little explored so far. Therefore, a more systematic investigation is highly warranted in this area, especially, as the authors envisage a greater activity in the building and commissioning of more infrastructures worldwide incommensurate with augmented economic activities during the post-COVID recovery period.

Originality/value

The authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. The authors have also included the results from some recent tests carried out at the facilities using a newly commissioned state-of-the-art furnace.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

18596

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Structural Survey, vol. 19 no. 3
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 1 September 2001

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management…

14773

Abstract

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Facilities, vol. 19 no. 9
Type: Research Article
ISSN: 0263-2772

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14378

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Property Management, vol. 19 no. 3
Type: Research Article
ISSN: 0263-7472

Article
Publication date: 1 May 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14155

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Journal of Property Investment & Finance, vol. 19 no. 5
Type: Research Article
ISSN: 1463-578X

1 – 10 of over 1000