Search results

1 – 10 of 31
Article
Publication date: 29 August 2023

Yingshuang Liu, Ran Liu, Dalei Zhang, Shaohua Xing, Xiaohui Dou, Xinwei Zhang and Zonghao He

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Abstract

Purpose

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Design/methodology/approach

The experiment uses a combination of array electrodes and simulation.

Findings

It is found that when the weld reinforcement exists, the corrosion tendency of both ends of the weld metal is greater than that of other parts of the welded joint due to the influence of high turbulence kinetic energy and shear stress. The presence of weld reinforcement heights makes the fluid behind it fluctuate greatly. The passivation films of both the base metal (BM) at the rear and the heat-affected zone (HAZ) are more prone to corrosion than those of the front BM and HAZ, and the passivation film is rougher.

Originality/value

The combination of test and simulation was used to explore the influence of electrochemical and hydrodynamic factors on the corrosion behaviour of titanium alloy-welded joints when welding residual height existed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 October 2023

Junyu Shi, Shengli Ling, Yinjie Kuang, Yonggang Tong, Yongle Hu and Dunying Deng

The purpose of this paper is to reveal the effect of microstructure on the corrosion behavior of CoCrNi alloy in 3.5 Wt.% NaCl solution.

Abstract

Purpose

The purpose of this paper is to reveal the effect of microstructure on the corrosion behavior of CoCrNi alloy in 3.5 Wt.% NaCl solution.

Design/methodology/approach

The as-cast CoCrNi alloy was prepared by arc melting, and the cold-rolled and annealed alloys were prepared by processing the as-cast alloy.

Findings

The experimental results showed that a protective passivation film was formed on the surfaces of these CoCrNi MEA, and the stability and compactness of alloys increased in the sequence of cold-rolled, as-cast and annealed CoCrNi alloys. The annealed CoCrNi alloys had the best pitting resistance.

Originality/value

This study proposes the effect of the microstructure of CoCrNi alloy on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2023

Yuchen Xi, Qinying Wang, Yafei Wu, Xingshou Zhang, Lijin Dong, ShuLin Bai and Yi Yang

The purpose of this study is to investigate the crevice corrosion behavior and mechanism of laser additive manufacturing (LAM) nickel-based alloy under wedge-shaped crevice.

Abstract

Purpose

The purpose of this study is to investigate the crevice corrosion behavior and mechanism of laser additive manufacturing (LAM) nickel-based alloy under wedge-shaped crevice.

Design/methodology/approach

First, the opening size of the wedge-shaped crevice was designed to 0.1, 0.3 and 0.5 mm by controlling the thickness of silicon rubber and the double-side adhesive tape. Then, one side of the glass sheet was stuck on the silicon strip and keep the electrodes of Rows 1 and 2 outside the crevice as a reference, and the opposite side was stuck to the wire beam electrode by silica gel.

Findings

The current density with a maximum value of 5.7 × 10−6 A/cm2 was observed at the crevice opening of 0.5 mm, while the lowest value of 9.2 × 10−7 A/cm2 was found at the crevice opening of 0.1 mm. In addition, the corrosion resistance at the inside of the crevice is higher than that at the outside and the middle of the crevice. It means that the internal width of the wedge-shaped crevice tends toward 0, which hinders the migration of ions in the corrosive medium. The generation of corrosive products further reduce the crevice size to cause the inhibition of corrosion at the inside of the crevice as well.

Originality/value

The multilayer and multipath LAM component is prepared to show the complex microstructure, which made the corrosion behavior and mechanism at wedge-shaped crevice nondeterminacy.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 January 2024

Meigui Yin, Lei Zhang and Longxiang Huang

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Abstract

Purpose

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Design/methodology/approach

A high-temperature steam generator was applied to salt spray test samples, a fretting wear rig was used to realize the damage behavior tests, an electrochemical workstation was applied to analysis the changes of each sample’s corrosion dynamic response before and after fretting wear.

Findings

The thickness of the oxide film that formed on sample surface was increased with the salt spray duration, and somewhat it could act as lubrication during the fretting wear process; however, the corrosive chloride would accelerate the fretting mechanical damage behavior.

Originality/value

In a salt steam spray condition, the fretting tribo-corrosion behaviors of Inconel 690 alloy surface was studied.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 December 2023

Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang and Jinglong Qu

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’…

Abstract

Purpose

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’ surface is analyzed to illustrate the corrosion mechanism.

Design/methodology/approach

Electrochemical tests were used to investigated the corrosion resistance of GH4738 superalloys with different UIT densities. The microstructure was compared before and after the corrosion tests. The passive film characterization was described by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) tests.

Findings

The compressive residual stress and corrosion resistance of the specimens significantly increased after UIT. The order of corrosion resistance is related to the UIT densities, i.e. 1.96 s/mm2 > 1.71 s/mm2 > 0.98 s/mm2 > as-cast. The predominant constituents of the passive films are TiO2, Cr2O3, MoO3 and NiO. The passive film on the specimen with 1.96 s/mm2 UIT density has the highest volume fraction of Cr2O3 and MoO3, which is the main reason for its superior corrosion resistance.

Originality/value

This study provides quantitative corrosion data for GH4738 superalloys treated by ultrasonic impact. The corrosion mechanism is explained by the passive film’s characterization.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 December 2023

Zhengwei Song, Shengjian Zhang, Lifeng Ding, Xuejing Wu and Ning Long

The purpose of this paper was prepared a Ni-based superhydrophobic coating on the surface of copper to enhence its corrosion resistance. The superhydrophobic coating (SHPC) has…

Abstract

Purpose

The purpose of this paper was prepared a Ni-based superhydrophobic coating on the surface of copper to enhence its corrosion resistance. The superhydrophobic coating (SHPC) has proven to be an effective surface treatment in corrosion protection. In this paper, a Ni-based SHPC was prepared on the surface of copper (Cu) to enhance its corrosion resistance.

Design/methodology/approach

The coating was prepared through a two-step electrodeposition process. The first step involves the formation of a micro-nano structure Ni layer formed by an electrodeposition process. Subsequently, the polysiloxane layer was deposited on the Ni surface to create an SHPC. The morphology, composition, structure, wettability and corrosion resistance of the coating were characterized and discussed.

Findings

The results show that the water contact angle of the as-prepared coating reaches 155.5°±1.0°. The corrosion current density (icorr = 3.90 × 10−9 A·cm−2) decreased by three orders of magnitude compared to the substrate, whereas |Z|f = 0.01Hz (2.40 × 106 Ω·cm2) increased by three orders of magnitude. It indicated that the prepared coating has excellent superhydrophobicity and high corrosion resistance, which can provide better protection for the substrate.

Originality/value

The prepared coating provides long-lasting protection for Cu and other metals and offers valuable data for developing SHPCs.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 August 2023

Yuchen Xi, Qinying Wang, Xiaofang Luo, Xingshou Zhang, Tingyao Liu, Huaibei Zheng, Lijin Dong, Jie Wang and Jin Zhang

The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of…

Abstract

Purpose

The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy.

Design/methodology/approach

Monel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior.

Findings

The number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing.

Originality/value

The corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 31