Search results

1 – 10 of 19
Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2023

Aoxiang Qiu, Weimin Sang, Feng Zhou and Dong Li

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied…

Abstract

Purpose

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied to incompressible flows at a low Reynolds number, which is not sufficient to satisfy the needs of aircraft engineering. Devoted to tackling the defect, the paper proposes a developed LBM combining the subgrid model and the multiple relaxation time (MRT) approach. A multilayer adaptive Cartesian grid method to improve the computing efficiency of the traditional LBM is also employed.

Design/methodology/approach

The subgrid model and the multilayer adaptive Cartesian grid are introduced into MRT-LBM for simulations of incompressible flows at a high Reynolds number. Validated by several typical flow simulations, the numerical methods in this paper can efficiently study the flows under high Reynolds numbers.

Findings

Some numerical simulations for the lid-driven flow of cavity, flow around iced GLC305, LB606b and ONERA-M6 are completed. The paper presents the investigation results, indicating that the methods are accurate and effective for the separated flow after icing.

Originality/value

LBM is developed with the addition of the subgrid model and the MRT method. A numerical strategy is proposed using a multilayer adaptive Cartesian grid method and its treatment of boundary conditions. The paper refers to innovative algorithm developments and applications to the aircraft engineering, especially for iced wing simulations with flow separations.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 March 2024

Payman Sahbah Ahmed, Ava A.K. Mohammed and Fakhir Aziz Rasul Rozhbiany

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping…

Abstract

Purpose

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping characteristics in applications such as machine bases, rockets, satellites, missiles, navigation equipment and aircraft as large structures, and electronics as such small structures. Vibration causes damaging strains in these components.

Design/methodology/approach

By adding machining chips with weight percentages of 5, 10, 15 and 20 Wt.%, with three different chip lengths added for each percentage (0.6, 0.8 and 1.18 mm), the three-point bending and damping characteristics tests are utilized to examine how manufacturing waste impacts the mechanical properties. Following that, the optimal lengths and the chip-to-epoxy ratio are determined. The chip dispersion and homogeneity are assessed using a field emission scanning electron microscope.

Findings

Waste copper alloys can be used to enhance the vibration-dampening properties of epoxy resin. The interface and bonding between the resin and the chip are crucial for enhancing the damping capabilities of epoxy. Controlling the flexural modulus by altering the chip size and quantity can change the damping characteristics because the two variables are inversely related. The critical chip size is 0.8 mm, below which smaller chips cannot evenly transfer, and disperse the vibration force to the epoxy matrix and larger chips may shatter and fracture.

Originality/value

The main source of problems in machine tools, aircraft and vehicle manufacturing is vibrations generated in the structures. These components suffer harmful strains due to vibration. Damping can be added to these structures to get over these problems. The distribution of energy stored as a result of oscillatory mobility is known as damping. To optimize the serving lifetime of a dynamic suit, this is one of the most important design elements. The use of composites in construction is a modern method of improving a structure's damping capacity. Additionally, it has been demonstrated that composites offer better stiffness, strength, fatigue resistance and corrosion resistance. This research aims to reduce the vibration effect by using copper alloy wastes as dampers.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2024

Hillal M. Elshehabey, Andaç Batur Çolak and Abdelraheem Aly

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double…

Abstract

Purpose

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double diffusion inside a porous L-shaped cavity including two fins.

Design/methodology/approach

The ISPH method solves the nondimensional governing equations of a physical model. The ISPH simulations are attained at different Frank–Kamenetskii number, Darcy number, coupled Soret/Dufour numbers, coupled Cattaneo–Christov heat/mass fluxes, thermal radiation parameter and nanoparticle parameter. An artificial neural network (ANN) is developed using a total of 243 data sets. The data set is optimized as 171 of the data sets were used for training the model, 36 for validation and 36 for the testing phase. The network model was trained using the Levenberg–Marquardt training algorithm.

Findings

The resulting simulations show how thermal radiation declines the temperature distribution and changes the contour of a heat capacity ratio. The temperature distribution is improved, and the velocity field is decreased by 36.77% when the coupled heat Cattaneo–Christov heat/mass fluxes are increased from 0 to 0.8. The temperature distribution is supported, and the concentration distribution is declined by an increase in Soret–Dufour numbers. A rise in Soret–Dufour numbers corresponds to a decreasing velocity field. The Frank–Kamenetskii number is useful for enhancing the velocity field and temperature distribution. A reduction in Darcy number causes a high porous struggle, which reduces nanofluid velocity and improves temperature and concentration distribution. An increase in nanoparticle concentration causes a high fluid suspension viscosity, which reduces the suspension’s velocity. With the help of the ANN, the obtained model accurately predicts the values of the Nusselt and Sherwood numbers.

Originality/value

A novel integration between the ISPH method and the ANN is adapted to handle the heat and mass transfer within a new L-shaped geometry with fins in the presence of several physical effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 19