Search results

1 – 10 of 17
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 4 April 2024

Hsing-Hua Chang, Chen-Hsin Lai, Kuen-Liang Lin and Shih-Kuei Lin

Factor investment is booming in global asset management, especially environmental, social, and governance (ESG), dividend yield, and volatility factors. In this chapter, we use…

Abstract

Factor investment is booming in global asset management, especially environmental, social, and governance (ESG), dividend yield, and volatility factors. In this chapter, we use data from the US securities market from 2003 to 2019 to predict dividends and volatility factors through machine learning and historical data–based methods. After that, we utilize particle swarm optimization to construct the Markowitz portfolio with limits on the number of assets and weight restrictions. The empirical results show that that the prediction ability using XGBoost is superior to the historical factor investment method. Moreover, the investment performance of our portfolio with ESG, high-yield, and low-volatility factors outperforms baseline methods, especially the S&P 500 ETF.

Details

Advances in Pacific Basin Business, Economics and Finance
Type: Book
ISBN: 978-1-83753-865-2

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Open Access
Book part
Publication date: 1 May 2019

Shiwei Chen, Kailun Feng and Weizhuo Lu

This paper aims to provide decision support for precast concrete contractors about both precast concrete supply chain strategies and construction configurations.

Abstract

Purpose

This paper aims to provide decision support for precast concrete contractors about both precast concrete supply chain strategies and construction configurations.

Design/Methodology/Approach

This paper proposes a simulation-based optimisation for supply chain and construction (SOSC) during the planning phase of PC building projects. The discrete event simulation is used to capture the characteristics of supply chain and construction processes, and calculate construction objectives under different plans. Particle swarm optimisation is combined with simulation to find optimal supply chain strategies and construction configurations.

Findings

The efficiency of SOSC is compared with the parametric simulation approach. Over 70 per cent of time and effort used to simulate and compare alternative plans is saved owing to SOSC.

Research Limitations/Implications

Building simulation model costs a lot of time and effort. The data requirement of the proposed method is high.

Practical Implications

The proposed SOSC approach can provide decision support for PC contractors by optimising supply chain strategies and construction configurations.

Originality/Value

This paper has two contributions: one is in providing a decision support tool SOSC to optimise both supply chain strategies and construction configurations, while the other is in building a prototype of SOSC and testing it in a case study.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Book part
Publication date: 6 November 2013

Can B. Kalayci and Surendra M. Gupta

Disturbing increase in the use of virgin resources to produce new products has threatened the environment. Many countries have reacted to this situation through regulations which…

Abstract

Disturbing increase in the use of virgin resources to produce new products has threatened the environment. Many countries have reacted to this situation through regulations which aim to eliminate negative impact of products on the environment shaping the concept of environmentally conscious manufacturing and product recovery (ECMPRO). The first crucial and the most time-consuming step of product recovery is disassembly. The best productivity rate is achieved via a disassembly line in an automated disassembly process. In this chapter, we consider a sequence-dependent disassembly line balancing problem (SDDLBP) with multiple objectives that is concerned with the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the disassembly precedence constraints and optimizing the effectiveness of several measures considering sequence-dependent time increments among disassembly tasks. Due to the high complexity of the SDDLBP, there is currently no known way to optimally solve even moderately sized instances of the problem. Therefore, an efficient methodology based on the simulated annealing (SA) is proposed to solve the SDDLBP. Case scenarios are considered and comparisons with ant colony optimization (ACO), particle swarm optimization (PSO), river formation dynamics (RFD), and tabu search (TS) approaches are provided to demonstrate the superior functionality of the proposed algorithm.

Details

Applications of Management Science
Type: Book
ISBN: 978-1-78190-956-0

Keywords

Book part
Publication date: 23 April 2024

Emerson Norabuena-Figueroa, Roger Rurush-Asencio, K. P. Jaheer Mukthar, Jose Sifuentes-Stratti and Elia Ramírez-Asís

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to…

Abstract

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to modern one. Data mining technology, which has been widely used in several applications, including those that function on the web, includes clustering algorithms as a key component. Web intelligence is a recent academic field that calls for sophisticated analytics and machine learning techniques to facilitate information discovery, particularly on the web. Human resource data gathered from the web are typically enormous, highly complex, dynamic, and unstructured. Traditional clustering methods need to be upgraded because they are ineffective. Standard clustering algorithms are enhanced and expanded with optimization capabilities to address this difficulty by swarm intelligence, a subset of nature-inspired computing. We collect the initial raw human resource data and preprocess the data wherein data cleaning, data normalization, and data integration takes place. The proposed K-C-means-data driven cuckoo bat optimization algorithm (KCM-DCBOA) is used for clustering of the human resource data. The feature extraction is done using principal component analysis (PCA) and the classification of human resource data is done using support vector machine (SVM). Other approaches from the literature were contrasted with the suggested approach. According to the experimental findings, the suggested technique has extremely promising features in terms of the quality of clustering and execution time.

Details

Technological Innovations for Business, Education and Sustainability
Type: Book
ISBN: 978-1-83753-106-6

Keywords

Content available
Book part
Publication date: 23 April 2024

Abstract

Details

Technological Innovations for Business, Education and Sustainability
Type: Book
ISBN: 978-1-83753-106-6

Book part
Publication date: 17 October 2022

Stefania Boglietti, Martina Carra, Massimiliano Sotgiu, Benedetto Barabino, Michela Bonera and Giulio Maternini

Nowadays, the increase in the capacity of batteries has laid the foundations for a broader diffusion of electric mobility. However, electric mobility is causing a growing

Abstract

Nowadays, the increase in the capacity of batteries has laid the foundations for a broader diffusion of electric mobility. However, electric mobility is causing a growing electricity demand as well as the need to increase the diffusion of suitable charging stations. Within these last challenges, drawing on the recent literature, this chapter provides a critical and wide-ranging review of papers dealing with the formulation of the problem of the localisation of electric vehicle (EV) charging points. This problem is approached considering the electric charging infrastructure technologies, localisation criteria and related methodologies. This review shows how the ‘electric mobility revolution’ applies the technological innovations provided by the energy supply systems, and the location of these systems within the urban contexts. Since the technological innovations have different options, achieving an international standard of charging systems is still far away. Moreover, as there are several criteria, parameters and methodologies, and some analytical approaches for the localisation of electric vehicle charging points, the formulation of the ‘localisation’ problem should require the application of multi-criteria analysis to be addressed. Finally, the results show that there is no consensus on technologies, criteria, and methodologies to be adopted. Therefore, this wide-ranging analysis of the literature would be useful to support possible benchmarking and systematisation accordingly.

Details

Electrifying Mobility: Realising a Sustainable Future for the Car
Type: Book
ISBN: 978-1-83982-634-4

Keywords

Book part
Publication date: 12 July 2021

Kuok King Kuok, Chiu Po Chan and Sobri Harun

Rainfall–runoff relationship is one of the most complex hydrological phenomena. A conventional neural network (NN) with backpropagation algorithm has successfully modelled various…

Abstract

Rainfall–runoff relationship is one of the most complex hydrological phenomena. A conventional neural network (NN) with backpropagation algorithm has successfully modelled various non-linear hydrological processes in recent years. However, the convergence rate of the backpropagation NN is relatively slow, and solutions may trap at local minima. Therefore, a new metaheuristic algorithm named as cuckoo search optimisation was proposed to combine with the NN to model the daily rainfall–runoff relationship at Sungai Bedup Basin, Sarawak, Malaysia. Two-year rainfall–runoff data from 1997 to 1998 had been used for model training, while one-year data in 1999 was used for model validation. Input data used are current rainfall, antecedent rainfall and antecedent runoff, while the targeted output is current runoff. This novel NN model is evaluated with the coefficient of correlation (R) and the Nash–Sutcliffe coefficient (E2). Results show that cuckoo search optimisation neural network (CSONN) is able to yield R and E2 to 0.99 and 0.94, respectively, for model validation with the optimal configuration of number of nests (n) = 20, initial discovery rate of alien eggs (painitial) = 0.6, hidden neuron (HN) = 100, iteration number (IN) = 1,000 and learning rate (LR) = 1 for CSONND4 model. The results revealed that the newly developed CSONN is able to simulate runoff accurately using only precipitation and runoff data.

Content available
Book part
Publication date: 12 July 2021

Abstract

Details

Water Management and Sustainability in Asia
Type: Book
ISBN: 978-1-80071-114-3

1 – 10 of 17