Search results

11 – 20 of over 2000
Article
Publication date: 30 January 2018

Sangeetha M. and Sabari A.

This paper aims to provide prolonging network lifetime and optimizing energy consumption in mobile wireless sensor networks (MWSNs). Forming clusters of mobile nodes is a great…

Abstract

Purpose

This paper aims to provide prolonging network lifetime and optimizing energy consumption in mobile wireless sensor networks (MWSNs). Forming clusters of mobile nodes is a great task owing to their dynamic nature. Such clustering has to be performed with a higher consumption of energy. Perhaps sensor nodes might be supplied with batteries that cannot be recharged or replaced while in the field of operation. One optimistic approach to handle the issue of energy consumption is an efficient way of cluster organization using the particle swarm optimization (PSO) technique.

Design/methodology/approach

In this paper two improved versions of centralized PSO, namely, unequal clustering PSO (UC-PSO) and hybrid K-means clustering PSO (KC-PSO), are proposed, with a focus of achieving various aspects of clustering parameters such as energy consumption, network lifetime and packet delivery ratio to achieve energy-efficient and reliable communication in MWSNs.

Findings

Theoretical analysis and simulation results show that improved PSO algorithms provide a balanced energy consumption among the cluster heads and increase the network lifetime effectively.

Research limitations/implications

In this work, each sensor node transmits and receives packets at same energy level only. In this work, focus was on centralized clustering only.

Practical implications

To validate the proposed swarm optimization algorithm, a simulation-based performance analysis has been carried out using NS-2. In each scenario, a given number of sensors are randomly deployed and performed in a monitored area. In this work, simulations were carried out in a 100 × 100 m2 network consisting 200 nodes by using a network simulator under various parameters. The coordinate of base station is assumed to be 50 × 175. The energy consumption due to communication is calculated using the first-order radio model. It is considered that all nodes have batteries with initial energy of 2 J, and the sensing range is fixed at 20 m. The transmission range of each node is up to 25 m and node mobility is set to 10 m/s.

Practical implications

This proposed work utilizes the swarm behaviors and targets the improvement of mobile nodes’ lifetime and energy consumption.

Originality/value

PSO algorithms have been implemented for dynamic sensor nodes, which optimize the clustering and CH selection in MWSNs. A new fitness function is evaluated to improve the network lifetime, energy consumption, cluster formation, packet transmissions and cluster head selection.

Article
Publication date: 2 October 2017

Volkan Yasin Pehlivanoglu

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Abstract

Purpose

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Design/methodology/approach

The new algorithm emphasizes the use of a direct and an indirect design prediction based on local surrogate models in particle swarm optimization (PSO) algorithm. Local response surface approximations are constructed by using radial basis neural networks. The principal role of surrogate models is to answer the question of which individuals should be placed into the next swarm. Therefore, the main purpose of surrogate models is to predict new design points instead of estimating the objective function values. To demonstrate its merits, the new approach and six comparative algorithms were applied to two different test cases including surface fitting of a geographical terrain and an inverse design of a wing, the averaged best-individual fitness values of the algorithms were recorded for a fair comparison.

Findings

The new algorithm provides more than 60 per cent reduction in the required generations as compared with comparative algorithms.

Research limitations/implications

The comparative study was carried out only for two different test cases. It is possible to extend test cases for different problems.

Practical implications

The proposed algorithm can be applied to different inverse design problems.

Originality/value

The study presents extra ordinary application of double surrogate modeling usage in PSO for inverse design problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Obaid Ur Rehman, Shiyou Yang and Shafiullah Khan

The aim of this paper is to explore the potential of standard quantum particle swarm optimization algorithms to solve single objective electromagnetic optimization problems.

Abstract

Purpose

The aim of this paper is to explore the potential of standard quantum particle swarm optimization algorithms to solve single objective electromagnetic optimization problems.

Design/methodology/approach

A modified quantum particle swarm optimization (MQPSO) algorithm is designed.

Findings

The MQPSO algorithm is an efficient and robust global optimizer for optimizing electromagnetic design problems. The numerical results as reported have demonstrated that the proposed approach can find better final optimal solution at an initial stage of the iterating process as compared to other tested stochastic methods. It also demonstrates that the proposed method can produce better outcomes by using almost the same computation cost (number of iterations). Thus, the merits or advantages of the proposed MQPSO method in terms of both solution quality (objective function values) and convergence speed (number of iterations) are validated.

Originality/value

The improvements include the design of a new position updating formula, the introduction of a new selection method (tournament selection strategy) and the proposal of an updating parameter rule.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2007

S. Subramanian and R. Bhuvaneswari

This paper aims to employ particle swarm optimization (PSO) technique for optimum design of single‐phase induction motor (SPIM) on the basis of maximizing the efficiency of the…

721

Abstract

Purpose

This paper aims to employ particle swarm optimization (PSO) technique for optimum design of single‐phase induction motor (SPIM) on the basis of maximizing the efficiency of the motor simultaneously satisfying a set of performance constraints.

Design/methodology/approach

The design problem of a SPIM is presented as a nonlinear optimization problem on the basis of maximizing the efficiency of the motor. A set of performance constraints are imposed in the optimization procedure. Particle swarm optimization technique is used as an optimization tool for obtaining the motor dimensions corresponding to maximum efficiency. Incorporation of PSO as a derivative free optimization technique in solving SPIM optimum design problem significantly relieves the assumptions imposed on the optimized objective function.

Findings

This approach has been applied to two sample motors and the results are compared with the evolutionary programming (EP) results. It is observed that the proposed approach is effective and robust.

Originality/value

The fields of application of SPIMs are expanding day by day. The emphasis on energy conservation demands an improvement of the efficiency of single‐phase induction motors. Hence, the design optimization of these motors with efficiency as objective function assumes great importance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 December 2021

Altug Piskin, Tolga Baklacioglu and Onder Turan

The purpose of this paper is to introduce a hybrid, metaheuristic, multimodal and multi-objective optimization tool that is needed for aerospace propulsion engineering problems.

Abstract

Purpose

The purpose of this paper is to introduce a hybrid, metaheuristic, multimodal and multi-objective optimization tool that is needed for aerospace propulsion engineering problems.

Design/methodology/approach

Multi-objective hybrid optimization code is integrated with various benchmark and test functions that are selected suitable to the difficulty level of the aero propulsion performance problems.

Findings

Ant colony and particle swarm optimization (ACOPSO) has performed satisfactorily with benchmark problems.

Research limitations/implications

ACOPSO is able to solve multi-objective and multimodal problems. Because every optimization problem has specific features, it is necessary to search their general behavior using other algorithms.

Practical implications

In addition to the optimization solving, ACOPSO enables an alternative methodology for turbine engine performance calculations by using generic components maps. The user is flexible for searching various effects of component designs along with the compressor and turbine maps.

Originality/value

A hybrid optimization code that has not been used before is introduced. It is targeted use is propulsion systems optimization and design such as Turboshaft or turbofan by preparing the necessary engine functions. A number of input parameters and objective functions can be modified accordingly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

Gai-Ge Wang, Amir Hossein Gandomi, Xin-She Yang and Amir Hossein Alavi

Meta-heuristic algorithms are efficient in achieving the optimal solution for engineering problems. Hybridization of different algorithms may enhance the quality of the solutions…

1011

Abstract

Purpose

Meta-heuristic algorithms are efficient in achieving the optimal solution for engineering problems. Hybridization of different algorithms may enhance the quality of the solutions and improve the efficiency of the algorithms. The purpose of this paper is to propose a novel, robust hybrid meta-heuristic optimization approach by adding differential evolution (DE) mutation operator to the accelerated particle swarm optimization (APSO) algorithm to solve numerical optimization problems.

Design/methodology/approach

The improvement includes the addition of DE mutation operator to the APSO updating equations so as to speed up convergence.

Findings

A new optimization method is proposed by introducing DE-type mutation into APSO, and the hybrid algorithm is called differential evolution accelerated particle swarm optimization (DPSO). The difference between DPSO and APSO is that the mutation operator is employed to fine-tune the newly generated solution for each particle, rather than random walks used in APSO.

Originality/value

A novel hybrid method is proposed and used to optimize 51 functions. It is compared with other methods to show its effectiveness. The effect of the DPSO parameters on convergence and performance is also studied and analyzed by detailed parameter sensitivity studies.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 January 2017

Łukasz Knypiński, Cezary Jedryczka and Andrzej Demenko

The purpose of this paper is to compare parameters and properties of optimal structures of a line-start permanent magnet synchronous motor (LSPMSM) for the cage winding of a…

Abstract

Purpose

The purpose of this paper is to compare parameters and properties of optimal structures of a line-start permanent magnet synchronous motor (LSPMSM) for the cage winding of a different rotor bar shape.

Design/methodology/approach

The mathematical model of the considered motor includes the equation of the electromagnetic field, the electric circuit equations and equation of mechanical equilibrium. The numerical implementation is based on finite element method (FEM) and step-by-step algorithm. To improve the particle swarm optimization (PSO) algorithm convergence, the velocity equation in the classical PSO method is supplemented by an additional term. This term represents the location of the center of mass of the swarm. The modified particle swarm algorithm (PSO-MC) has been used in the optimization calculations.

Findings

The LSPMSM with drop type bars has better performance and synchronization parameters than motors with circular bars. It is also proved that the used modification of the classical PSO procedure ensures faster convergence for solving the problem of optimization LSPMSM. This modification is particularly useful when the field model of phenomena is used.

Originality/value

The authors noticed that to obtain the maximum power factor and efficiency of the LSPMSM, the designer should take into account dimensions and the placement of the magnets in the designing process. In the authors’ opinion, the equivalent circuit models can be used only at the preliminary stage of the designing of line-start permanent magnet motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 January 2022

Vahid Goodarzimehr, Fereydoon Omidinasab and Nasser Taghizadieh

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables…

147

Abstract

Purpose

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables. The PSOGA is an efficient hybridized algorithm to solve optimization problems.

Design/methodology/approach

These algorithms have shown outstanding performance in solving optimization problems with continuous variables. The PSO conceptually models the social behavior of birds, in which individual birds exchange information about their position, velocity and fitness. The behavior of a flock is influencing the probability of migration to other regions with high fitness. The GAs procedure is based on the mechanism of natural selection. The present study uses mutation, random selection and reproduction to reach the best genetic algorithm by the operators of natural genetics. Thus, only identical chromosomes or particles can be converged.

Findings

In this research, using the idea of hybridization PSO and GA algorithms are hybridized and a new meta-heuristic algorithm is developed to minimize the space trusses with continuous design variables. To showing the efficiency and robustness of the new algorithm, several benchmark problems are solved and compared with other researchers.

Originality/value

The results indicate that the hybrid PSO algorithm improved in both exploration and exploitation. The PSO algorithm can be used to minimize the weight of structural problems under stress and displacement constraints.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 February 2020

Ho Pham Huy Anh and Cao Van Kien

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power…

Abstract

Purpose

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power isolated microgrid. The microgrid investigated combines renewable and conventional power generation.

Design/methodology/approach

Five bio-inspired optimization methods include an advanced proposed multi-objective particle swarm optimization (MOPSO) approach which is comparatively applied for OEM of the implemented microgrid with other bio-inspired optimization approaches via their comparative simulation results.

Findings

Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization methods. Moreover, the proposed MOPSO is successfully applied to perform 24-h OEM microgrid. The simulation results also display the merits of the real time optimization along with the arbitrary of users’ selection as to satisfy their power requirement.

Originality/value

This paper focuses on the OEM of a designed microgrid using a newly proposed modified MOPSO algorithm. Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization approaches.

Article
Publication date: 25 February 2014

Yanxia Sun, Karim Djouani, Barend Jacobus van Wyk, Zenghui Wang and Patrick Siarry

– In this paper, a new method to improve the performance of particle swarm optimization is proposed.

313

Abstract

Purpose

In this paper, a new method to improve the performance of particle swarm optimization is proposed.

Design/methodology/approach

This paper introduces hypothesis testing to determine whether the particles trap into the local minimum or not, then special re-initialization was proposed, finally, some famous benchmarks and constrained engineering optimization problems were used to test the efficiency of the proposed method. In the revised manuscript, the content was revised and more information was added.

Findings

The proposed method can be easily applied to PSO or its varieties. Simulation results show that the proposed method effectively enhances the searching quality.

Originality/value

This paper proposes an adaptive particle swarm optimization method (APSO). A technique is applied to improve the global optimization performance based on the hypothesis testing. The proposed method uses hypothesis testing to determine whether the particles are trapped into local minimum or not. This research shows that the proposed method can effectively enhance the searching quality and stability of PSO.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

11 – 20 of over 2000