Search results

1 – 10 of 85
Content available
Article
Publication date: 1 June 2004

36

Abstract

Details

Pigment & Resin Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 13 October 2022

Marcin Myśliwiec, Ryszard Kisiel and Mirosław J. Kruszewski

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties…

Abstract

Purpose

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.

Design/methodology/approach

Mechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.

Findings

It was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.

Originality/value

The new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 8 May 2018

Thomas Wopelka, Ulrike Cihak-Bayr, Claudia Lenauer, Ferenc Ditrói, Sándor Takács, Johannes Sequard-Base and Martin Jech

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear…

13045

Abstract

Purpose

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime.

Design/methodology/approach

Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear.

Findings

A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring.

Originality/value

The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 20 January 2022

Blaža Stojanović, Sandra Gajević, Nenad Kostić, Slavica Miladinović and Aleksandar Vencl

This study aims to present a novel methodology for the evaluation of tribological properties of new nanocomposites with the A356 alloy matrix reinforced with aluminium oxide (Al2O3

Abstract

Purpose

This study aims to present a novel methodology for the evaluation of tribological properties of new nanocomposites with the A356 alloy matrix reinforced with aluminium oxide (Al2O3) nanoparticles.

Design/methodology/approach

Metal matrix nanocomposites (MMnCs) with varying amounts and sizes of Al2O3 particles were produced using a compocasting process. The influence of four factors, with different levels, on the wear rate, was analysed with the help of the design of experiments (DoE). A regression model was developed by using the response surface methodology (RSM) to establish a relationship between the observed factors and the wear rate. An artificial neural network was also applied to predict the value of wear rate. Adequacy of models was compared with experimental values. The extreme values of wear rate were determined with a genetic algorithm and particle swarm optimization using the RSM model.

Findings

The combination of optimization methods determined the values of the factors which provide the highest wear resistance, namely, reinforcement content of 0.44 wt.% Al2O3, sliding speed of 1 m/s, normal load of 100 N and particle size of 100 nm. Used methods proved as effective tools for modelling and predicting of the behaviour of aluminium matrix nanocomposites.

Originality/value

The specific combinations of the optimization methods has not been applied up to now in the investigation of MMnCs. In addition, using of small content of ceramic nanoparticles as reinforcement has been poorly investigated. It can be stated that the presented approach for testing and prediction of the wear rate of nanocomposites is a very good base for their future research.

Content available
Article
Publication date: 26 September 2008

73

Abstract

Details

Industrial Lubrication and Tribology, vol. 60 no. 6
Type: Research Article
ISSN: 0036-8792

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 August 1999

David Margaroni

165

Abstract

Details

Industrial Lubrication and Tribology, vol. 51 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 27 June 2023

Farid Salari, Paolo Bosetti and Vincenzo M. Sglavo

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design…

Abstract

Purpose

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.

Design/methodology/approach

The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.

Findings

Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.

Originality/value

The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 19 April 2022

Niklas Rönnberg, Rasmus Ringdahl and Anna Fredriksson

The noise and dust particles caused by the construction transport are by most stakeholders experienced as disturbing. The purpose of this study is to explore how sonification can…

1143

Abstract

Purpose

The noise and dust particles caused by the construction transport are by most stakeholders experienced as disturbing. The purpose of this study is to explore how sonification can support visualization in construction planning to decrease construction transport disturbances.

Design/methodology/approach

This paper presents an interdisciplinary research project, combining research on construction logistics, internet of things and sonification. First, a data recording device, including sound, particle, temperature and humidity sensors, was implemented and deployed in a development project. Second, the collected data were used in a sonification design, which was, third, evaluated with potential users.

Findings

The results showed that the low-cost sensors used could capture “good enough” data, and that the use of sonification for representing these data is interesting and a possible useful tool in urban and construction transport planning.

Research limitations/implications

There is a need to further evolve the sonification design and better communicate the aim of the sounds used to potential users. Further testing is also needed.

Practical implications

This study introduces new ideas of how to support visualization with sonification planning the construction work and its impact on the vicinity of the site. Currently, urban planning and construction planning focus on visualizing the final result, with little focus on how to handle disturbances during the construction process.

Originality/value

Showing the potentials of using low-cost sensor data in sonification, and using sonification together with visualization, is the result of a novel interdisciplinary research area combination.

Details

Smart and Sustainable Built Environment, vol. 12 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Content available
126

Abstract

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

1 – 10 of 85