Search results

1 – 10 of 130
Article
Publication date: 11 October 2022

Deena El-Mahdy, Hisham S. Gabr and Sherif Abdelmohsen

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most…

Abstract

Purpose

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most market-useable materials in 3D printing as concrete which consumes high carbon emission.

Design/methodology/approach

Characterization and mechanical tests were conducted on 19 samples for three natural binders in dry and wet tests to mimic the additive manufacturing process in order to reach an efficient extrudable and printable mixture that fits the 3D printer.

Findings

Upon testing compressive strength against grain size, compaction, cohesion, shape, heat and water content, X-Salt was shown to record high compressive strength of 9.5 MPa. This is equivalent to old Karshif and fire bricks and surpasses both rammed Earth and new Karshif. Material flow analysis for X-Salt assessing energy usage showed that only 10% recycled waste was produced by the end of the life cycle compared to salt.

Research limitations/implications

Findings are expected to upscale the use of 3D salt printing in on-site and off-site architectural applications.

Practical implications

Findings contribute to attempts to resolve challenges related to vernacular architecture using 3D salt printing with sufficient stability.

Social implications

Benefits include recyclability and minimum environmental impact. Social aspects related to technology integration remain however for further research.

Originality/value

This paper expands the use of Karshif, a salt-based traditional building material in Egypt's desert by using X-Salt, a salt-base and natural adhesive, and investigating its printability by testing its mechanical properties to reach a cleaner and low-cost sustainable 3D printed mixture.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 November 2023

Devendra Pratap Singh, Vijay Kumar Dwivedi and Mayank Agarwal

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite…

Abstract

Purpose

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite under self-pouring temperature conditions. This study aims to determine the optimal mixture proportion of fine powders of Al, Si and xAl2O3 (with x values of 2%, 3% and 4%) through the application of design of experiment (DoE) and statistical analysis using the Minitab software. This study also involved evaluating the microstructural estimation and other physical properties of the cast composite to understand the combined effect of the reinforcement proportion on the material’s properties.

Design/methodology/approach

The researchers initially mixed the powders through ball milling and then compacted the moisture-free powder mix in a closed steel die. The resulting preforms were heated at the self-pouring temperature in an inert environment to fabricate the final cast composite. By applying DoE and performing an analysis of variance (ANOVA), the researchers sought to optimize the mixture proportion that would yield the best mechanical properties.

Findings

The experimental results indicated that a mixture combination of 83.5% Al blended with 12.5% Si and 4% Al2O3 led to the greatest improvement in mechanical properties, specifically in terms of increased density, hardness and impact strength. The ANOVA further supported the interaction effect of each processing parameter on the observed results. The results of this study offer valuable insights for the fabrication of modified Al2O3-LM6 cast composites under self-pouring temperature conditions. The identified optimal mixture proportion provides guidance for manufacturing processes and material selection to achieve improved mechanical properties in similar applications.

Originality/value

This study focuses on a specific composite material consisting of modified Al2O3 and LM6. Although Al2O3 and LM6 have been studied individually in various contexts, the combination of these materials and their impact on mechanical properties under self-pouring temperature conditions is a novel aspect of this research. The researchers use DoE methodology, along with statistical analysis using Minitab software, to optimize the mixture proportion and analyze the data. This systematic approach allows for a comprehensive exploration of the parameter space and the identification of significant factors that influence the mechanical properties of the composite.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2023

Rania Abdel Gwad Eloriby and Hamdy Mohamed Mohamed

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a…

Abstract

Purpose

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a significant problem in assembling this type of artifact. Therefore, the assembling process is considered one of the important stages that must be taken care of to preserve these artifacts from damage and loss.

Design/methodology/approach

To evaluate the stability of adhesives, the samples were subjected to artificial aging under varying environmental conditions. Some investigative techniques and mechanical testing were used in this study to evaluate the selected materials. It includes a transmission electron microscope, X-ray diffraction, visual assessment, digital microscope, scanning electron microscopy (SEM), color change and tensile strength test.

Findings

The visual evaluation and the digital microscope results showed that the epoxy/nano-Al2O3 greatly resisted artificial aging. Although slight yellowing was present, it did not significantly affect the general appearance of the samples. On the other hand, the pure epoxy sample showed cracks of different sizes on its surface due to aging, as evidenced by SEM examination. Furthermore, epoxy/nano-Al2O3 has a better tensile strength (11.27 MPa) and slight color change (ΔE = 2.06).

Originality/value

The main objective of the experimental study was to identify appropriate adhesive materials that possess key properties such as non-yellowing and improved tensile strength by conducting various tests and evaluations. Ultimately, the goal was to identify materials that could serve as effective adhesives for assembling the archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 February 2023

Ripendeep Singh Sidhu, Gurmeet Singh and Harjot Singh Gill

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with…

Abstract

Purpose

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with various micro textures. The two different textures (prism and square) were created over the surfaces of both materials by using the 3D-printed technique.

Design/methodology/approach

The erosion experiments on both materials were performed by using Ducom Erosion Jet Tester. Erosion tests were performed at four different impacting velocities (15, 30, 45 and 60 m/s) with the four different particle sizes (17, 39, 63 97 µm) at the impact angles (30°–90°) for the time duration of 5, 10, 15 and 20 min. The two different textures prism and cone were used for performing the erosion experiments. Taguchi’s orthogonal L16 (mixed level) was used to reduce the number of experiments and to determine the impact of these parameters on erosion wear performance of both 3D-printed materials.

Findings

The PLA with cone texture was found to be best (against erosion) than the ABS cone and prism textures due to their high hardness (68 HV). Also, the average signal to noise (S/N) ratio for PLA and ABS was measured as 56.4 and 44.4 dB, respectively. As the value of the S/N ratio is inversely proportional to the erosion rate, the PLA has the least erosion rate as compared to the ABS. The sequence of erosion wear influencing parameters for both materials was in the following order: velocity > erodent size > texture > impact angle > time interval.

Originality/value

Both PLA and ABS with different micro textures for erosion testing were studied with Taguchi’s optimization method, and the erosion mechanisms are well analyzed by using scanning electron microscopy and Image J techniques.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 October 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Kylyn A. Morales, Dalisa Mars L. Revilleza, Laurence V. Catindig and Marish S. Madlangbayan

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete…

Abstract

Purpose

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete containing CSA can achieve strengths that are comparable to regular concrete. The purpose of the present work is to evaluate the concrete’s durability-related properties to supplement these earlier findings.

Design/methodology/approach

Cylindrical specimens were prepared with a constant water–cement ratio of 0.50 and CSA content ranging from 0% to 50% (at 10% increment) by volume of the total coarse aggregates. The specimens were cured for 28 days and then tested for density, surface hardness, electrical resistivity and water sorptivity. The surface hardness was measured to describe the concrete resistance to surface wearing, while the resistivity and sorptivity were evaluated to describe the material’s resistance to fluid penetration.

Findings

The results showed that the surface hardness of concrete remained on average at 325 Leeb and did not change significantly with CSA addition. The distribution of surface hardness was also similar across all CSA groups, with the interquartile range averaging 59 Leeb. These results suggest that the cement paste and gravel stiffness had a more pronounced influence on the surface hardness than CSA. On the other hand, concrete became lighter by about 9%, had lower resistivity by 80% and had significantly higher initial sorptivity by up to 110%, when 50% of its natural gravel was replaced with CSA. Future work may be done to improve the durability of CSA when used as coarse aggregate.

Originality/value

The present study is the first to show the lack of correlation between CSA content and surface hardness. It would mean that the surface hardness test may not completely capture the porous nature of CSA-added concrete. The paper concludes that without additional treatment prior to mixing, CSA may be limited only to applications where concrete is not in constant contact with water or deleterious substances.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

Payman Sahbah Ahmed, Ava A.K. Mohammed and Fakhir Aziz Rasul Rozhbiany

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping…

Abstract

Purpose

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping characteristics in applications such as machine bases, rockets, satellites, missiles, navigation equipment and aircraft as large structures, and electronics as such small structures. Vibration causes damaging strains in these components.

Design/methodology/approach

By adding machining chips with weight percentages of 5, 10, 15 and 20 Wt.%, with three different chip lengths added for each percentage (0.6, 0.8 and 1.18 mm), the three-point bending and damping characteristics tests are utilized to examine how manufacturing waste impacts the mechanical properties. Following that, the optimal lengths and the chip-to-epoxy ratio are determined. The chip dispersion and homogeneity are assessed using a field emission scanning electron microscope.

Findings

Waste copper alloys can be used to enhance the vibration-dampening properties of epoxy resin. The interface and bonding between the resin and the chip are crucial for enhancing the damping capabilities of epoxy. Controlling the flexural modulus by altering the chip size and quantity can change the damping characteristics because the two variables are inversely related. The critical chip size is 0.8 mm, below which smaller chips cannot evenly transfer, and disperse the vibration force to the epoxy matrix and larger chips may shatter and fracture.

Originality/value

The main source of problems in machine tools, aircraft and vehicle manufacturing is vibrations generated in the structures. These components suffer harmful strains due to vibration. Damping can be added to these structures to get over these problems. The distribution of energy stored as a result of oscillatory mobility is known as damping. To optimize the serving lifetime of a dynamic suit, this is one of the most important design elements. The use of composites in construction is a modern method of improving a structure's damping capacity. Additionally, it has been demonstrated that composites offer better stiffness, strength, fatigue resistance and corrosion resistance. This research aims to reduce the vibration effect by using copper alloy wastes as dampers.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 November 2023

Tanuja Gupta and M. Chakradhara Rao

This study aims to practically determine the optimum proportion of aggregates to attain the desired strength of geopolymer concrete (GPC) and then compare the results using…

Abstract

Purpose

This study aims to practically determine the optimum proportion of aggregates to attain the desired strength of geopolymer concrete (GPC) and then compare the results using established analytical particle packing methods. The investigation further aims to assess the influence of various amounts of recycled aggregate (RA) on properties of low-calcium fly ash-based GPC of grade M25.

Design/methodology/approach

Fine and coarse aggregates were blended in various proportions and the proportion yielding maximum packing density was selected as the optimum proportion and they were compared with analytical models, such as Modified Toufar Model (MTM) and J. D. Dewar Model. RAs for this study were produced in laboratory and they were used in various amounts, namely, 0%, 50% and 100%. 12M NaOH solution was mixed with Na2SiO3 in the ratio of 1:2. The curing of concrete was done at the temperatures of 60° and 90 °C for 24, 48 and 72h.

Findings

The experimentally obtained optimum proportion of coarse to fine aggregate was 60:40 for all amounts of RA. Meanwhile, MTM and Dewar Model resulted in coarse aggregate to fine aggregates as 40:60, 45:55, 55:45 and 55:45, 35:65, 60:40, respectively, for 0% 100% and 50% RAs. The compressive strength of GPC elevated with the increase in curing regime. In addition, the ultrasonic pulse velocity also displayed a similar trend as that of strength.

Originality/value

The GPC with 50% RAs may be considered for use, as it exhibited superior properties compared to GPC with 100% RAs and was comparable to GPC with natural aggregates. Furthermore, compressive strength is correlated with split tensile strength and ultrasonic pulse velocity.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 130