Search results

1 – 10 of 180
Article
Publication date: 9 January 2024

Zhuoyu Zhang, Lijia Zhong, Mingwei Lin, Ri Lin and Dejun Li

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to…

Abstract

Purpose

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to abnormal drift values due to the challenging underwater optical imaging environment. When an AUV approaches the docking station, the absolute positioning method fails if the AUV captures an insufficient number of tracers. This study aims to to provide a more stable absolute position visual positioning method for underwater terminal visual docking.

Design/methodology/approach

This paper presents a six-degree-of-freedom positioning method for AUV terminal visual docking, which uses lights and triangle codes. The authors use an extended Kalman filter to fuse the visual calculation results with inertial measurement unit data. Moreover, this paper proposes a triangle code recognition and positioning algorithm.

Findings

The authors conducted a simulation experiment to compare the underwater positioning performance of triangle codes, AprilTag and Aruco. The results demonstrate that the implemented triangular code reduces the running time by over 70% compared to the other two codes, and also exhibits a longer recognition distance in turbid environments. Subsequent experiments were carried out in Qingjiang Lake, Hubei Province, China, which further confirmed the effectiveness of the proposed positioning algorithm.

Originality/value

This fusion approach effectively mitigates abnormal drift errors stemming from visual positioning and cumulative errors resulting from inertial navigation. The authors also propose a triangle code recognition and positioning algorithm as a supplementary approach to overcome the limitations of tracer light positioning beacons.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Book part
Publication date: 18 January 2024

Deejaysing Jogee, Manta Devi Nowbuth, Virendra Proag and Jean-Luc Probst

It is now well-established that good water quality is associated with economic prosperity, reduced incidence on public health and the good functioning of the various ecosystems…

Abstract

It is now well-established that good water quality is associated with economic prosperity, reduced incidence on public health and the good functioning of the various ecosystems found in our environment. Water contamination is mostly related to both diffused (agricultural lands and geologic rock degradations) and point sources of pollution. Mauritius has many water resources which depend solely on precipitation for their replenishment. Water parameters which are of relevance include total dissolved solids (TDS), temperature, pH, electrical conductivity, turbidity, dissolved oxygen, dissolved and particulate organic carbon and major cations and anions. The traditional methods of analysis for these parameters are mostly using electrical and optical methods (probes and sensors in the field), while chemical titrations, Flame AAS and High-Performance Liquid Chromatography techniques are carried out in the laboratory. Image Classification techniques using neural networks can also be used to detect the presence of contaminants in water. In addition to basic water quality parameters, the field sensors range have been extended to cover important major ions and can now be integrated with Artificial Intelligence (AI)-based models for the prediction of variations in water quality to better protect human health and the environment, reduce operation costs of water and wastewater treatment plant unit processes.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 10 October 2023

Sou-Sen Leu, Yen-Lin Fu and Pei-Lin Wu

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect…

Abstract

Purpose

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect maintenance based on the inspection records and the maintenance actions.

Design/methodology/approach

A real-time hidden Markov chain (HMM) model is proposed in this paper to predict the reliability performance tendency and remaining useful life under imperfect maintenance based on rare failure events. The model assumes a Poisson arrival pattern for facility failure events occurrence. HMM is further adopted to establish the transmission probabilities among stages. Finally, the simulation inference is conducted using Particle filter (PF) to estimate the most probable model parameters. Water seals at the spillway hydraulic gate in a Taiwan's reservoir are used to examine the appropriateness of the approach.

Findings

The results of defect probabilities tendency from the real-time HMM model are highly consistent with the real defect trend pattern of civil facilities. The proposed facility degradation prediction model can provide the maintenance division with early warning of potential failure to establish a proper proactive maintenance plan, even under the condition of rare defects.

Originality/value

This model is a new method of civil facility degradation prediction under imperfect maintenance, even with rare failure events. It overcomes several limitations of classical failure pattern prediction approaches and can reliably simulate the occurrence of rare defects under imperfect maintenance and the effect of inspection reliability caused by human error. Based on the degradation trend pattern prediction, effective maintenance management plans can be practically implemented to minimize the frequency of the occurrence and the consequence of civil facility failures.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 January 2024

Xiangdi Yue, Yihuan Zhang, Jiawei Chen, Junxin Chen, Xuanyi Zhou and Miaolei He

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and…

Abstract

Purpose

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) techniques. This paper aims to provide a significant reference for researchers and engineers in robotic mapping.

Design/methodology/approach

This paper focused on the research state of LiDAR-based SLAM for robotic mapping as well as a literature survey from the perspective of various LiDAR types and configurations.

Findings

This paper conducted a comprehensive literature review of the LiDAR-based SLAM system based on three distinct LiDAR forms and configurations. The authors concluded that multi-robot collaborative mapping and multi-source fusion SLAM systems based on 3D LiDAR with deep learning will be new trends in the future.

Originality/value

To the best of the authors’ knowledge, this is the first thorough survey of robotic mapping from the perspective of various LiDAR types and configurations. It can serve as a theoretical and practical guide for the advancement of academic and industrial robot mapping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 February 2024

Georgy Sunny, S. Lalkrishna, Jerin James and Sreejith Suprasannan

Personal Protective Equipment plays an inevitable part in the current scenario of pandemics in the world. A novel coronavirus, Severe Acute Respiratory Syndrome-Corona Virus-2…

Abstract

Purpose

Personal Protective Equipment plays an inevitable part in the current scenario of pandemics in the world. A novel coronavirus, Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-Cov 2), began as an outbreak of pneumonia in Wuhan, China, in late December 2019, and quickly spread worldwide. It quickly escalated into an international public health crisis. This opened up the high demand for the innovation and research of new materials in the Personal Protective Equipment industry.

Design/methodology/approach

PubMed, Embase and Google Scholar were searched for relevant literature regarding personal protective equipment and the information was organized in a systematic way.

Findings

There are no adequate number of studies taken up in the field of use of textiles in medical applications especially with PPEs.

Research limitations/implications

This structured review will generate a sense of the significance of using PPE for controlling pandemics and also awaken need for additional research and innovations in this area.

Practical implications

The authorities of the management should take timely intervention in choosing the right material for their PPE in their hospitals. Hence health care professionals teams have an inevitable role in preventing the adverse environmental impact due to the inadvertent disposal of PPEs.

Social implications

There is a lack of systematic way of disposing contaminated single-use face masks in a safe, environmentally acceptable manner. The dumping of single-use PPE in domestic garbage has had an adverse effect on the environment. Mismanaged plastic waste endangers the health of ecosystems by polluting marine and terrestrial environments, posing a significant risk of ingestion or injury to animals and contaminating habitats.

Originality/value

This review article provides an in-depth review of the use of different materials in PPE and challenges regarding its long-term use and implications on the environment.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 September 2023

Yang Zhou, Long Wang, Yongbin Lai and Xiaolong Wang

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to…

Abstract

Purpose

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to accurately measure the pose of the tanker car.

Design/methodology/approach

The collected image is first subjected to a gray enhancement operation, and the black parts of the image are extracted using Otsu’s threshold segmentation and morphological processing. The edge pixels are then filtered to remove outliers and noise, and the remaining effective points are used to fit the contour information of the tank car mouth. Using the successfully extracted contour information, the pose information of the tank car mouth in the camera coordinate system is obtained by establishing a binocular projection elliptical cone model, and the pixel position of the real circle center is obtained through the projection section. Finally, the binocular triangulation method is used to determine the position information of the tank car mouth in space.

Findings

Experimental results have shown that this method for measuring the position and orientation of the tank car mouth is highly accurate and can meet the requirements for industrial loading accuracy.

Originality/value

A method for extracting the contours of various types of complex tanker mouth is proposed. This method can accurately extract the contour of the tanker mouth when the contour is occluded or disturbed. Based on the binocular elliptic conical model and perspective projection theory, an innovative method for measuring the pose of the tanker mouth is proposed, and according to the space characteristics of the tanker mouth itself, the ambiguity of understanding is removed. This provides a new idea for the automatic loading of ash tank cars.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 180