Search results

11 – 20 of 158
Article
Publication date: 5 September 2021

Manjeet Kumar, Xu Liu, Kapil Kumar Kalkal, Virender Dalal and Manjeet Kumari

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such…

Abstract

Purpose

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such media..

Design/methodology/approach

The mathematical model evolved by Zhou et al. (2019) is solved through the Helmholtz decomposition theorem. The propagation velocities of bulk waves in partially saturated poro-thermoelastic media are derived by using the potential functions. The phase velocities and attenuation coefficients are expressed in terms of inhomogeneity angle. Reflection characteristics (phase shift, loci of vertical slowness, amplitude, energy) of elastic waves are investigated at the stress-free thermally insulated boundary of a considered medium. The boundary can be permeable or impermeable. The incident wave is portrayed with both attenuation and propagation directions (i.e. inhomogeneous wave). Numerical computations are executed by using MATLAB.

Findings

In this medium, the permanence of five inhomogeneous waves is found. Incidence of the inhomogeneous wave at the thermally insulated stress-free surface results in five reflected inhomogeneous waves in a partially saturated poro-thermoelastic media. The reflection coefficients and splitting of incident energy are obtained as a function of propagation direction, inhomogeneity angle, wave frequency and numerous thermophysical features of the partially saturated poro-thermoelastic media. The energy of distinct waves (incident wave, reflected waves) accompanying interference energies between distinct pairs of waves have been exhibited in the form of an energy matrix.

Originality/value

The sensitivity of propagation characteristics (velocity, attenuation, phase shift, loci of vertical slowness, energy) to numerous aspects of the physical model is analyzed graphically through a particular numerical example. The balance of energy is substantiated by virtue of the interaction energies at the thermally insulated stress-free surface (opened/sealed pores) of unsaturated poro-thermoelastic media through the bulk waves energy shares and interaction energy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2020

Mohammed Y. Fattah and Basma A. Dawood

This study aims to predict the volume changes and collapse potential (CP) associated with the changes in soil suction by using the pressure cell and the effect of initial load on…

Abstract

Purpose

This study aims to predict the volume changes and collapse potential (CP) associated with the changes in soil suction by using the pressure cell and the effect of initial load on soil suction. Three types of gypseous soils have been experimented in this study, sandy gypseous soil from different parts of Iraq. A series of collapse tests were carried out using the oedometer device [single oedometer test (SOT) and double oedometer test (DOT)]. In addition, large-scale model with soil dimensions 700 × 700 × 600 mm was used to show the effect of water content changes in different relations (collapse with time, stress with time, suction with time, etc.).

Design/methodology/approach

A series of collapse tests were carried out using the oedometer device (SOT and DOT). In addition, a large-scale model with soil dimensions 700 × 700 × 600 mm was used to show the effect of water content changes in different relations (collapse with time, stress with time, suction with time, etc.).

Findings

The CP increases with the increasing of the void ratio for each soil. For each soil, the CP decreased when the initial degree of saturation increased. Kerbala soil with gypsum content (30%) revealed collapse value higher than Tikrit soil with gypsum content (55%) under the same initial conditions of water content and density, this is because the higher the Cu value of Kerbala soil is, the more well-graded the soil will be. Upon wetting, the smaller particles or fractions of the well-graded soil tend to fill in the existing voids, resulting in a lower void ratio as compared to the poorly graded one. Consequently, soils with high Cu value tend to collapse more than poorly graded ones. The compressibility of the soil is low when loaded under unsaturated condition, the CP for samples tested in the DOTs under stress level 800 kPa are greater than those obtained from collapse test at a stress level of 200 kPa.

Originality/value

The initial value of suction for all soils increases with initial water content decreases.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1995

D.R.J. Owen, S.Y. Zhao and J.G. Loughran

A finite element solution to the rolling of two‐phase materials ispresented and applied to the rolling of prepared sugar cane. The generalizedBiot theory is extended and modified…

Abstract

A finite element solution to the rolling of two‐phase materials is presented and applied to the rolling of prepared sugar cane. The generalized Biot theory is extended and modified to suit the present problem and the velocity of the solid skeleton and the pore pressure are taken as the primary unknowns. The finite element approach is applied to the governing equations for spatial discretization, followed by time domain discretization by standard difference methods. A constitutive relation evaluated from a finite element simulation of experiments performed on a constrained compression test cell is employed. The computational model of the rolling of prepared cane with two rolls is presented. The material parameters of prepared cane are described and their variation during the rolling process are derived and discussed. Numerical results are presented to illustrate the performance and capability of the model and solution procedures.

Details

Engineering Computations, vol. 12 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 February 2018

Namal Yapage and Samanthika Liyanapathirana

This paper aims to investigate the behaviour of geosynthetic reinforced deep cement mixed (DCM) column-supported embankments constructed over soft soils.

Abstract

Purpose

This paper aims to investigate the behaviour of geosynthetic reinforced deep cement mixed (DCM) column-supported embankments constructed over soft soils.

Design/methodology/approach

Coupled consolidation analyses based on the finite element method are carried out assuming that the soil and DCM columns are fully saturated porous mediums. In the first part of the paper, a case study of an embankment constructed over a very soft soil deposit in Finland is presented. Two- and three-dimensional finite element models for the case study are developed including isolated and attached DCM columns beneath the embankment to capture the arching mechanism between DCM columns. The model simulations were carried out considering the actual staged construction procedure adopted in the field. Finite element predictions show good agreement with field data and confirm that the load transfer is mainly between attached columns beneath the embankment. Next, the significance of geosynthetic reinforcement on the load transfer mechanism is investigated. Finally, the influence of permeability of columns and soft soil on the performance of geosynthetic reinforcement column-supported embankments is studied.

Findings

Results demonstrate that the excess pore pressure dissipation rate is fast in DCM column-improved ground compared to the same case without any columns, although the same permeability is assigned to both DCM columns and surrounding soft soil. When DCM column permeability exceeds soil permeability, excess pore pressure dissipation rate shows a remarkable increase compared to that observed when the DCM column permeability is less than or equal to the permeability of surrounding soft soil. [ ]

Originality/value

This paper investigates the contribution of permeability and geosynthetic layer on the vertical load transfer mechanism of the embankment and modelling issues related to application of the embankment load and the properties of the cement-improved columns.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 January 2010

Mauricio Centeno Lobão, Rob Eve, D.R.J. Owen and Eduardo Alberto de Souza Neto

The mechanical response of the skeleton of a porous medium is highly dependent on its seepage behaviour as pore pressure modifications affect the in situ stress field. The purpose…

Abstract

Purpose

The mechanical response of the skeleton of a porous medium is highly dependent on its seepage behaviour as pore pressure modifications affect the in situ stress field. The purpose of this paper is to describe how up formulation is employed using an explicit time integration scheme where fully saturated and single‐phase partially saturated analyse are incorporated for 2D and 3D cases.

Design/methodology/approach

Owing to their inherent simplicity, low‐order elements provide an excellent framework in which contact conditions coupled with crack propagation can be dealt with in an effective manner. For linear elements this implies single point integration which, however, can result in spurious zero‐energy modes which necessitates introduction of a stabilization technique to provide reliable results.

Findings

The success of the modelling strategy ultimately depends on the inter‐dependence of different phenomena. The linking between the displacements components, network and pore pressures represents an important role in the efficiency of the overall coupling procedure. Therefore, a master‐slave technique is proposed to link seepage and network fields, proving to be particularly attractive from a computational cost point of view. Another development that has provided substantial savings in CPU times is the use of an explicit‐explicit subcycling scheme.

Originality/value

Significant reduction in computational cost is achievable using a master‐slave procedure to link seepage and fracture network‐flows and an explicit‐explicit subcycling scheme. Special attention is focused on the investigation of the influence of plastic zones in oil production problems.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2015

Ke Wan and Xikui Li

The purpose of this paper is to extend the bridge scale method (BSM) developed for granular materials with only the solid phase to that taking into account the effects of wetting…

Abstract

Purpose

The purpose of this paper is to extend the bridge scale method (BSM) developed for granular materials with only the solid phase to that taking into account the effects of wetting process in porous continuum. The granular material is modeled as partially saturated porous Cosserat continuum and discrete particle assembly in the coarse and fine scales, respectively.

Design/methodology/approach

Based on the mass and momentum conservation laws for the three phases, i.e. the solid skeleton, the pore water and the pore air, the governing equations for the unsaturated porous Biot-Cosserat continuum model in the coarse scale are derived. In light of the passive air pressure assumption, a reduced finite element model for the model is proposed. According to the decoupling of the fine and coarse scale calculations in the BSM, the unsaturated porous Cosserat continuum model using the finite element method and the discrete element model using the discrete element method for granular media are combined.

Findings

The numerical results for a 2D example problem of slope stability subjected to increasing rainfall along with mechanical loading demonstrate the applicability and performance of the present BSM. The microscopic mechanisms of macroscopic shear band developed in the slope are demonstrated.

Research limitations/implications

Do not account for yet the effects of unsaturated pore water in the fine scale.

Originality/value

The novel BSM that couples the Biot-Cosserat porous continuum modeling and the discrete particle assembly modeling in both coarse and fine scales, respectively, is proposed to provide a micro-macro discrete-continuum two-scale modeling approach for numerical simulations of the hydro-mechanical coupling problems in unsaturated granular materials.

Article
Publication date: 1 November 1996

J.P. Bardet

Investigates the effects of two‐phase instability on finite element (FE) solutions for porous hypoelastic solids saturated with an insterstitial fluid. Demonstrates that two‐phase…

Abstract

Investigates the effects of two‐phase instability on finite element (FE) solutions for porous hypoelastic solids saturated with an insterstitial fluid. Demonstrates that two‐phase instability creates definite problems to the FE computations of coupled solid‐fluid systems. The eigenvectors of the tangential finite element matrices which are responsible for problems are not artificial, but are the bifurcating modes of physical solutions. The investigation, although limited to the plane strain undrained compression of hypoelastic models, is relevant to the investigation of the two‐phase instability of other materials and boundary value problems, and may lead towards an explanation for numerical problems in soil liquefaction analysis.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2000

Sun‐Hoon Kim and Kwang‐Jin Kim

A three‐dimensional dynamic analysis program for saturated porous‐rocks and soils (MPDAP‐3D) is developed in this study. The theoretical formulations incorporated in the proposed…

Abstract

A three‐dimensional dynamic analysis program for saturated porous‐rocks and soils (MPDAP‐3D) is developed in this study. The theoretical formulations incorporated in the proposed computer program are the extension of Biot’s two‐phase theory to non‐linear region. The generalized Hoek and Brown model is used to represent the skeleton constitutive relation. A three‐dimensional elasto‐plastic matrix for the generalized Hoek and Brown model is derived by extending two‐dimensional formulation. Numerical study for typical verification problems is carried out to show the validation of the computational algorithms of the computer program.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1999

H.R. Thomas, H.T. Yang and Y. He

This paper presents a parallelised substructure based finite element approach to the solution of fully coupled heat, moisture and deformation problems in partially saturated soil

Abstract

This paper presents a parallelised substructure based finite element approach to the solution of fully coupled heat, moisture and deformation problems in partially saturated soil. A numerical model, based on previous work, is developed so that it is capable of solving larger and more complex problems with limited computing resources. The algorithm also offers the advantage of the strategy for further development within the context of parallel computing. A refinement to the standard substructure algorithm has been introduced for the matrix condensing procedure employed at the sub‐structure level, to improve computational efficiency. A numerical simulation is then performed using a parallel computer code for the fully coupled analysis, operating on a MIMD parallel computer (the Paramid). The benefits of the new approach are thus displayed. As a check on the accuracy of the new method, good correlation with other independent solutions are observed. Finally, the computing work performed indicates that the algorithm is yielding encouraging results, providing confidence in the further development of the approach.

Details

Engineering Computations, vol. 16 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 May 2009

B. Markicevic and H.K. Navaz

The purpose of this paper is to develop a general numerical solution for the wetting fluid spread into porous media that can be used in solving of droplet spread into soils

Abstract

Purpose

The purpose of this paper is to develop a general numerical solution for the wetting fluid spread into porous media that can be used in solving of droplet spread into soils, printing applications, fuel cells, composite processing.

Design/methodology/approach

A discrete capillary network model based on micro‐force balance is numerically implemented and the flow for an arbitrary capillary number can be solved. At the fluid interface, the boundary condition that accounts for the capillary pressure jump is used.

Findings

The wetting fluid spread into porous medium starts as a single‐phase flow, and after some particular number of the porous medium characteristic length scales, the multi‐phase flow pattern occurs. Hence, in the principal flow direction, the phase content (saturation) decreases, and in the lower limit for the capillary number sufficiently small, the saturation should become constant. This qualitative saturation behavior is observed irrespective of the flow dimensionality, whereas the quantitative results vary for different flow systems.

Research limitations/implications

The numerical solution has to be expanded to solve the spread of the fluid in the porous medium after there is no free fluid left at the porous medium surface.

Practical implications

It is shown that the multi‐phase flow can develop even on a small domain due to the porous medium heterogeneity. Neglecting the medium heterogeneity and flow type can lead to a large error as shown for the droplet spread time in the porous medium.

Originality/value

This is believe to be the only paper relating to solving the droplet spread into porous medium as a multi‐phase flow problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

11 – 20 of 158