Search results

1 – 10 of over 7000
Article
Publication date: 7 April 2015

Zivana Jakovljevic, Petar B. Petrovic, Dragan Milkovic and Miroslav Pajic

The purpose of this paper is to provide a method for the generation of information machines for part mating process diagnosis. Recognition of contact states between parts during…

Abstract

Purpose

The purpose of this paper is to provide a method for the generation of information machines for part mating process diagnosis. Recognition of contact states between parts during robotized part mating represents a significant element of the system for active compliant robot motion. All proposed information machines for contact states recognition will recognize one of the possible contact states even when irregular events in the process occur, and the active motion planner will continue to send commands to robot controller according to the planned trajectory.

Design/methodology/approach

The presented framework is based on the general theory of automata and formal languages. Starting from possible regular contact states transitions in part mating, the authors create an automaton for diagnostics, which, besides regular, accepts all irregular (observable and unobservable) process sequences.

Findings

Contact states do not appear arbitrarily during regular processes, but in certain context. Theory of automata represents a solid basis for contextual recognition and diagnosis of irregularities in part mating.

Research limitations/implications

The proposed methodology is elaborated and experimentally verified using an example of cylindrical part mating, and stick-slip effect as an observable irregularity. The future work will address the generation of diagnosers for other types of part mating tasks and extension of the set of observable irregularities.

Practical implications

The process diagnosis increases the robustness of active compliant motion system.

Originality/value

Although very important feedback information provider for active motion planner, part mating process monitoring was not frequently addressed in the past. In this paper, the authors propose a methodology for generation of part mating process diagnoser that is based on general automata theory.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 1992

Uwe Schweigert

Sensors considerably increase the new applications of industrial robots. Assembly utilizations exist in the fields of part loading, the supervision of the gripping and part mating

Abstract

Sensors considerably increase the new applications of industrial robots. Assembly utilizations exist in the fields of part loading, the supervision of the gripping and part mating process, and tolerance compensation as well as the testing and checking of the assembly job. A couple of years ago sensor applications in assembly with industrial robots existed only in research laboratories and development institutions. Nowadays, industry cannot refuse to use them. Improvements on sensorics such as faster data processing and lower costs, as well as higher accuracies in measuring and a more favourable rate to price and efficiency, allow sensor guided robots in assembly with technical and economical significance. Assembly systems with industrial robots demand high flexibility, process supervision and control to increase output quality, and require manifold sensor utilizations.

Details

Sensor Review, vol. 12 no. 4
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 15 July 2019

Nikola Lukic and Petar B. Petrovic

Stiffness control of redundant robot arm, aimed at using extra degrees of freedom (DoF) to shape the robot tool center point (TCP) elastomechanical behavior to be consistent with…

Abstract

Purpose

Stiffness control of redundant robot arm, aimed at using extra degrees of freedom (DoF) to shape the robot tool center point (TCP) elastomechanical behavior to be consistent with the essential requirements needed for a successful part mating process, i.e., to mimic part supporting mechanism with selective quasi-isotropic compliance (Remote Center of Compliance – RCC), with additional properties of inherent flexibility.

Design/methodology/approach

Theoretical analysis and synthesis of the complementary projector for null-space stiffness control of kinematically redundant robot arm. Practical feasibility of the proposed approach was proven by extensive computer simulations and physical experiments, based on commercially available 7 DoF SIA 10 F Yaskawa articulated robot arm, equipped with the open-architecture control system, system for generating excitation force, dedicated sensory system for displacement measurement and a system for real-time acquisition of sensory data.

Findings

Simulation experiments demonstrated convergence and stability of the proposed complementary projector. Physical experiments demonstrated that the proposed complementary projector can be implemented on the commercially available anthropomorphic redundant arm upgraded with open-architecture control system and that this projector has the capacity to efficiently affect the task-space TCP stiffness of the robot arm, with a satisfactory degree of consistency with the behavior obtained in the simulation experiments.

Originality/value

A novel complementary projector was synthesized based on the adopted objective function. Practical verification was conducted using computer simulations and physical experiments. For the needs of physical experiments, an adequate open-architecture control system was developed and upgraded through the implementation of the proposed complementary projector and an adequate system for generating excitation and measuring displacement of the robot TCP. Experiments demonstrated that the proposed complementary projector for null-space stiffness control is capable of producing the task-space TCP stiffness, which can satisfy the essential requirements needed for a successful part-mating process, thus allowing the redundant robot arm to mimic the RCC supporting mechanism behavior in a programmable manner.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 September 2014

Edvardas Sadauskas and Bronius Baksys

The paper aims to theoretically and experimentally investigate vibratory peg-bush alignment using elastic vibrations of the peg, when the peg is axially excited by a pressed…

Abstract

Purpose

The paper aims to theoretically and experimentally investigate vibratory peg-bush alignment using elastic vibrations of the peg, when the peg is axially excited by a pressed piezoelectric vibrator on the upper end.

Design/methodology/approach

Experimental research of part alignment using elastic vibrations was performed and dependencies of alignment duration on excitation signal parameters and initial pressing force were defined for rectangular and circular cross-section parts. Mathematical model of two-mass dynamic systems with elastic contact model representing alignment process was created. Dependencies of system parameters on the alignment duration were obtained by numerically solving systems differential equations.

Findings

Theoretical and experimental investigation approved the usage of elastic vibrations for alignment of chamferless circular and rectangular cross-section parts. This novel method of part alignment compensates axial misalignment between mating parts by directional displacement of movably based bush.

Research limitations/implications

Impact and non-impact interaction between bush and peg is possible; however, only non-impact regime was investigated. Static and dynamic coefficients of friction between the parts are equivalent and do not depend on relative velocity of parts.

Practical implications

The results are useful in designing reliable and effective assembly equipment with vibratory assistance alignment for peg-bush operations, which do not require auxiliary sensors and feedback systems. Use of a piezoelectric resonator for peg excitation makes this system easily adaptable to the existing automated assembly equipment.

Originality/value

The proposed method is a new approach to vibratory alignment. The data obtained during investigation expand the insight of the physical processes that drive bush to the axial alignment direction.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 October 2018

Shuanggao Li, Zhengping Deng, Qi Zeng and Xiang Huang

The assembly of large component in out-field is an important part for the usage and maintenance of aircrafts, which is mostly manually accomplished at present, as the commonly…

Abstract

Purpose

The assembly of large component in out-field is an important part for the usage and maintenance of aircrafts, which is mostly manually accomplished at present, as the commonly used large-volume measurement systems are usually inapplicable. This paper aims to propose a novel coaxial alignment method for large aircraft component assembly using distributed monocular vision.

Design/methodology/approach

For each of the mating holes on the components, a monocular vision module is applied to measure the poses of holes, which together shape a distributed monocular vision system. A new unconstrained hole pose optimization model is developed considering the complicated wearing on hole edges, and it is solved by a iterative reweighted particle swarm optimization (IR-PSO) method. Based on the obtained poses of holes, a Plücker line coordinates-based method is proposed for the relative posture evaluation between the components, and the analytical solution of posture parameters is derived. The required movements for coaxial alignment are finally calculated using the kinematics model of parallel mechanism.

Findings

The IR-PSO method derived more accurate hole pose arguments than the state-of-the-art method under complicated wearing situation of holes, and is much more efficient due to the elimination of constraints. The accuracy of the Plücker line coordinates-based relative posture evaluation (PRPE) method is competitive with the singular value decomposition (SVD) method, but it does not rely on the corresponding of point set; thus, it is more appropriate for coaxial alignment.

Practical implications

An automatic coaxial alignment system (ACAS) has been developed for the assembly of a large pilotless aircraft, and a coaxial error of 0.04 mm is realized.

Originality/value

The IR-PSO method can be applied for pose optimization of other cylindrical object, and the analytical solution of Plücker line coordinates-based axes registration is derived for the first time.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 July 2014

Rafał Kluz and Tomasz Trzepieciński

The purpose of the following work was to work out the dependency to allow for the determination of the repeatability positioning error value of the robot at any given point in its…

Abstract

Purpose

The purpose of the following work was to work out the dependency to allow for the determination of the repeatability positioning error value of the robot at any given point in its workspace, without the necessity of conducting time-consuming measurements while routing a precise surface of repeatability positioning.

Design/methodology/approach

The presented dependency permits for the possibility to determine, even at the planning phase, the optimal connection point in the workspace, ensuring the best parameters for the process of machine assembly, without needless overestimation of precision of the utilized equipment. To solve the task the sequential quadratic programming (SQP) method implemented in the MATLAB(R) environment was used. To verify the hypothesis of the compatibility of the empirical distribution with the hypothetical distribution of the robot’s positioning error, the Kolmogorov test was used.

Findings

In this paper, it has been demonstrated theoretically and experimentally that the industrial robot accuracy can vary over a very wide range in the workspace. This provides an additional opportunity to increase reliability of the assembly process through the appropriate choice of the point of parts joining. The methodology presented here allows the designer of assembly workstations to rapidly estimate the repeatability of robot positioning and to allocate at the design stage of assembly process the optimal position in the robot workspace to ensure the required precision, without unnecessarily high accuracy of equipment used and, therefore, without inflated costs.

Originality/value

An alternative solution to the stated problem can be the proposed method for determining the robot’s positioning errors, requiring a much smaller amount of measurements to be taken that would be necessary to determine the parameters of the random variable errors of the joint coordinates of the robot and for their verification by the repeatability of positioning in randomly selected points in the workspace. Additionally discussed in the study, the methodology of identifying connection place was designed for typical combinations of machine parts, most frequently encountered in assembly process and was taken into account, typical limitations occurring in actual manufacturing conditions.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 April 2008

Daniel Whitney

This paper's objective is to explain the concept of proper kinematic constraint to guide requirements‐driven design of mechanical assemblies and to connects proper constraint to…

1645

Abstract

Purpose

This paper's objective is to explain the concept of proper kinematic constraint to guide requirements‐driven design of mechanical assemblies and to connects proper constraint to the datum flow chain (DFC) and key characteristics (KCs).

Design/methodology/approach

The paper presents proper constraint as a way to support the goal of placing key parts in particular geometric relationships with respect to one another so that a DFC can deliver KCs unambiguously. Such a DFC is said to be competent. Additionally, a competent DFC is robust in the sense that the constraint relationships between parts retain their definition and effect under all allowed variations in parts.

Findings

Failure to provide proper constraint can lead to undesired consequences including locked‐in stresses and difficult or inconsistent assembly. Some designs need to be over‐constrained, and this requires very careful control and tight tolerances on the over‐constrained degrees of freedom in order to avoid or at least understand the consequences listed above.

Research limitations/implications

Mathematical methods exist to test designs for proper constraint. The simplest, and occasionally unsuccessful, is the Kutzbach criterion. Screw theory is the most reliable method but its application requires extra knowledge and mathematical tools.

Practical implications

Most CAD software and tolerance analysis software do not test designs for their state of constraint. The engineer needs to take account of this independently and be aware of the limitations of software as a guide. Tolerance analysis software that does not take account of constraint may yield incorrect answers.

Originality/value

The paper reinvigorates a once‐well‐known principle and makes engineers aware of it. It also links this concept to the concepts of DFC and KCs and supports a mathematically‐based method for designing assemblies.

Details

Assembly Automation, vol. 28 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 January 2018

Mahmood Reza Khabbazi, Jan Wikander, Mauro Onori and Antonio Maffei

This paper introduces a schema for the product assembly feature data in an object-oriented and module-based format using Unified Modeling Language (UML). To link production with…

Abstract

Purpose

This paper introduces a schema for the product assembly feature data in an object-oriented and module-based format using Unified Modeling Language (UML). To link production with product design, it is essential to determine at an early stage which entities of product design and development are involved and used at the automated assembly planning and operations. To this end, it is absolutely reasonable to assign meaningful attributes to the parts’ design entities (assembly features) in a systematic and structured way. As such, this approach empowers processes such as motion planning and sequence planning in assembly design.

Design/methodology/approach

The assembly feature data requirements are studied and definitions are analyzed and redefined. Using object-oriented techniques, the assembly feature data structure and relationships are modeled based on the identified requirements as five UML packages (Part, three-dimensional (3D) models, Mating, Joint and Handling). All geometric and non-geometric design data entities endorsed with assembly design perspective are extracted or assigned from 3D models and realized through the featured entity interface class. The featured entities are then associated (used) with the mating, handling and joints features. The AssemblyFeature interface is realized through mating, handling and joint packages related to the assembly and part classes. Each package contains all relevant classes which further classify the important attributes of the main class.

Findings

This paper sets out to provide an explanatory approach using object-oriented techniques to model the schema of assembly features association and artifacts at the product design level, all of which are essential in several subsequent and parallel steps of the assembly planning process, as well as assembly feature entity assignments in design improvement cycle.

Practical implications

The practical implication based on the identified advantages can be classified in three main features: module-based design, comprehensive classification, integration. These features help the automation and solution development processes based on the proposed models much easier and systematic.

Originality/value

The proposed schema’s comprehensiveness and reliability are verified through comparisons with other works and the advantages are discussed in detail.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 October 2007

Chi‐haur Wu, Yujun Xie and Swee Mean Mok

Virtual product design has become a key technology in reducing costly design errors that are often difficult to detect manually. In order to evaluate product assembly in a virtual…

Abstract

Purpose

Virtual product design has become a key technology in reducing costly design errors that are often difficult to detect manually. In order to evaluate product assembly in a virtual environment, it is important to link a product's design in CAD with the constrained complexity of assembly operations in CAM so that the design can be evaluated and modified in a virtual environment before production begins. The paper aims to focus on this.

Design/methodology/approach

The proposed virtual system includes the following components: a product assembly coding model, named Open Structured Assembly Coding System (OSACS), that codes partmating operations for assembling any two parts in CAM; a rule‐based code extractor that identifies OSACS codes for assembling product from the partmating information encoded in Standard for the Exchange of Product Model Data AP‐203 CAD data; and an assembly‐sequence generator that generates a binary assembly‐tree for the designed product coded with OSACS assembly codes, representing assembly operations in CAM for product assembly.

Findings

The proposed system links the design phase in CAD with the manufacturing phase in CAM. Simulation studies were made using CAD Ap‐203 data files from an actual mobile phone housing assembly. A binary assembly‐tree assigned with OSACS assembly codes was generated for assembling the product. The assembling complexity between any two parts was coded with the unique OSACS assembly codes. The final binary assembly tree represents how the product is going to be assembled in CAM with the mating complexity encoded in the assigned OSACS codes.

Research limitations/implications

The advantage of this virtual product assembly system is that a design can be validated first in a virtual environment without building the expensive physical production system. Moreover, additional design iterations can be performed in the same amount of time to improve product quality.

Practical implications

Linking product design in CAD with assembly operations in CAM can help realize significant cost savings by preventing future manufacturing problems. With the proposed virtual system, a company can prevent a potential problematic design from reaching production.

Originality/value

This paper introduces the conceptual design of a virtual system that links product design in CAD with assembly operations in CAM. This system provides a designer with a virtual product assembly process to evaluate a designed product.

Details

Assembly Automation, vol. 27 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 November 2022

Tuan-Hui Shen and Cong Lu

This paper aims to develop a method to improve the accuracy of tolerance analysis considering the spatial distribution characteristics of part surface morphology (SDCPSM) and…

Abstract

Purpose

This paper aims to develop a method to improve the accuracy of tolerance analysis considering the spatial distribution characteristics of part surface morphology (SDCPSM) and local surface deformations (LSD) of planar mating surfaces during the assembly process.

Design/methodology/approach

First, this paper proposes a skin modeling method considering SDCPSM based on Non-Gaussian random field. Second, based on the skin model shapes, an improved boundary element method is adopted to solve LSD of nonideal planar mating surfaces, and the progressive contact method is adopted to obtain relative positioning deviation of mating surfaces. Finally, the case study is given to verify the proposed approach.

Findings

Through the case study, the results show that different SDCPSM have different influences on tolerance analysis, and LSD have nonnegligible and different influence on tolerance analysis considering different SDCPSM. In addition, the LSD have a greater influence on translational deviation along the z-axis than rotational deviation around the x- and y-axes.

Originality/value

The surface morphology with different spatial distribution characteristics leads to different contact behavior of planar mating surfaces, especially when considering the LSD of mating surfaces during the assembly process, which will have further influence on tolerance analysis. To address the above problem, this paper proposes a tolerance analysis method with skin modeling considering SDCPSM and LSD of mating surfaces, which can help to improve the accuracy of tolerance analysis.

1 – 10 of over 7000