Search results

1 – 10 of 15
Article
Publication date: 21 November 2023

Pham Duc Tai, Krit Jinawat and Jirachai Buddhakulsomsiri

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a…

Abstract

Purpose

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.

Design/methodology/approach

The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.

Findings

For the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.

Originality/value

The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.

Article
Publication date: 27 February 2023

Guanxiong Wang, Xiaojian Hu and Ting Wang

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order…

210

Abstract

Purpose

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.

Design/methodology/approach

This paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.

Findings

(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.

Originality/value

The originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2023

Punsara Hettiarachchi, Subodha Dharmapriya and Asela Kumudu Kulatunga

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical…

Abstract

Purpose

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach. An increased cost in distribution is a major problem for many companies due to the absence of efficient planning methods to overcome operational challenges in distinct distribution networks. The problem addressed in this study is to minimize the transportation-related cost in distribution while using a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach which has not gained the adequate attention in the literature.

Design/methodology/approach

This study formulated the transportation problem as a vehicle routing problem with a heterogeneous fixed fleet and workload balancing, which is a combinatorial optimization problem of the NP-hard category. The model was solved using both the simulated annealing and a genetic algorithm (GA) adopting distinct local search operators. A greedy approach has been used in generating an initial solution for both algorithms. The paired t-test has been used in selecting the best algorithm. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet compositions of the heterogeneous fleet. Results were analyzed using analysis of variance (ANOVA) and Hsu’s MCB methods to identify the best scenario.

Findings

The solutions generated by both algorithms were subjected to the t-test, and the results revealed that the GA outperformed in solution quality in planning a heterogeneous fleet for distribution with load balancing. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet utilization with different compositions of the heterogeneous fleet. Results were analyzed using ANOVA and Hsu’s MCB method and found that removing the lowest capacities trucks enhances the average vehicle utilization with reduced travel distance.

Research limitations/implications

The developed model has considered both planning of heterogeneous fleet and the requirement of work load balancing which are very common industry needs, however, have not been addressed adequately either individually or collectively in the literature. The adopted solution methodologies to solve the NP-hard distribution problem consist of metaheuristics, statistical analysis and scenario analysis are another significant contribution. The planning of distribution operations not only addresses operational-level decision, through a scenario analysis, but also strategic-level decision has also been considered.

Originality/value

The planning of distribution operations not only addresses operational-level decisions, but also strategic-level decisions conducting a scenario analysis.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 January 2024

Wenlong Cheng and Wenjun Meng

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Abstract

Purpose

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Design/methodology/approach

In this study, an algorithm for job scheduling and cooperative work of multiple AGVs is designed. In the first part, with the goal of minimizing the total processing time and the total power consumption, the niche multi-objective evolutionary algorithm is used to determine the processing task arrangement on different machines. In the second part, AGV is called to transport workpieces, and an improved ant colony algorithm is used to generate the initial path of AGV. In the third part, to avoid path conflicts between running AGVs, the authors propose a simple priority-based waiting strategy to avoid collisions.

Findings

The experiment shows that the solution can effectively deal with job scheduling and multiple AGV operation problems in the workshop.

Originality/value

In this paper, a collaborative work algorithm is proposed, which combines the job scheduling and AGV running problem to make the research results adapt to the real job environment in the workshop.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of…

Abstract

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of supply chain management (SCM). The importance of finding the best quality techniques in SCM elements in the shortest possible time and at the least cost allows all organizations to increase the power of experts’ analysis in supply chain network (SCN) data under cost-effective conditions. In other words, this chapter aims to introduce an operations research model by presenting MLP for obtaining the best QET in the main domains of SCM. MLP is one of the most determinative tools in this chapter that can provide a competitive advantage. Under goal and system constraints, the most challenging task for decision-makers (DMs) is to decide which components to fund and at what levels. The definition of a comprehensive target value among the required goals and determining system constraints is the strength of this chapter. Therefore, this chapter can guide the readers to extract the best statistical and non-statistical techniques with the application of an operations research model through MLP in supply chain elements and shows a new innovation of the effective application of operations research approach in this field. The analytic hierarchy process (AHP) is a supplemental tool in this chapter to facilitate the relevant decision-making process.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

Article
Publication date: 12 January 2024

Mathew B. Fukuzawa, Brandon M. McConnell, Michael G. Kay, Kristin A. Thoney-Barletta and Donald P. Warsing

Demonstrate proof-of-concept for conducting NFL Draft trades on a blockchain network using smart contracts.

Abstract

Purpose

Demonstrate proof-of-concept for conducting NFL Draft trades on a blockchain network using smart contracts.

Design/methodology/approach

Using Ethereum smart contracts, the authors model several types of draft trades between teams. An example scenario is used to demonstrate contract interaction and draft results.

Findings

The authors show the feasibility of conducting draft-day trades using smart contracts. The entire negotiation process, including side deals, can be conducted digitally.

Research limitations/implications

Further work is required to incorporate the full-scale depth required to integrate the draft trading process into a decentralized user platform and experience.

Practical implications

Cutting time for the trade negotiation process buys decision time for team decision-makers. Gains are also made with accuracy and cost.

Social implications

Full-scale adoption may find resistance due to the level of fan involvement; the draft has evolved into an interactive experience for both fans and teams.

Originality/value

This research demonstrates the new application of smart contracts in the inter-section of sports management and blockchain technology.

Details

International Journal of Sports Marketing and Sponsorship, vol. 25 no. 2
Type: Research Article
ISSN: 1464-6668

Keywords

Article
Publication date: 28 February 2023

Shan Du

This paper aims to propose the mechanism of cross-network effect embedded, which can help cross-border e-commerce (CBEC) platforms strengthen cooperative relationships with…

Abstract

Purpose

This paper aims to propose the mechanism of cross-network effect embedded, which can help cross-border e-commerce (CBEC) platforms strengthen cooperative relationships with sellers more equitably and effectively by using the network structural characteristics of the platforms themselves.

Design/methodology/approach

A two-stage evolutionary game model has been used to confirm the influence factors. The mathematical derivation of evolutionary game analysis is combined with the simulation method to examine the role of cross-network effect in cooperation. The evolutionary game model based on the cross-network effect is proposed to achieve better adaptability to the study of cooperation strategy from the two-sided market perspective.

Findings

The evolutionary game model captures the interactions of cross-network effect and the influence factors from a dynamic perspective. The cross-network effect has a certain substitution on the revenue-sharing rate of SMEs. CBEC platforms can enhance the connection between consumers and the website by improving the level of construction, which is a good way to attract sellers more cost-effectively and efficiently.

Research limitations/implications

This study provides a new method for the validation of the cross-network effect, especially when data collection is difficult. But this method is only a numerical simulation. So the conclusions still need to be further tested empirically. Besides, researchers are advised to explore the relationship between the added user scale and the cross-network effect in some specificCBEC platforms.

Practical implications

This study provides a new method for the validation of the cross-network effect, especially when data collection is difficult. But this method is only a numerical simulation. So the conclusions still need to be further tested empirically. Besides, researchers are advised to explore the relationship between the added user scale and the cross-network effect in some specific CBEC platforms.

Originality/value

Investigations that study cooperation strategy from the cross-network effect perspective in CBEC are limited. The research figured out which influence factors are affected by the cross-network effect in cooperation. A two-stage evolutionary game model was proposed to explain the interaction of the factors. The evolutionary game analysis with a simulation method was combined to highlight the role of cross-network effect on cooperation strategy to give a deeper investigation into the sustainable cooperation ofCBEC.

Details

Kybernetes, vol. 53 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 15