Search results

1 – 10 of 81
Open Access
Article
Publication date: 30 August 2021

Kailun Feng, Shiwei Chen, Weizhuo Lu, Shuo Wang, Bin Yang, Chengshuang Sun and Yaowu Wang

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is…

1321

Abstract

Purpose

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is continuously invoked during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely construction decisions. Modification on the optimisation settings such as reducing searching ability is a popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an optimisation approach for construction planning that reduces the high computational loads of SO and provides reliable optimisation quality simultaneously.

Design/methodology/approach

This study proposes the optimisation approach by modifying the SO framework through establishing an embedded connection between simulation and optimisation technologies. This approach reduces the computational loads and ensures the optimisation quality associated with the conventional SO approach by accurately learning the knowledge from construction simulations using embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness evaluations for optimisation iterations.

Findings

A large-scale project application shows that the proposed approach was able to reduce computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in terms of optimisation quality when the optimisation has limited searching ability.

Originality/value

The core contribution of this research is to provide an innovative method that improves efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction applications. The proposed method is an alternative approach to SO that can run on standard computing platforms and support nearly real-time construction on-site decision-making.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 12 June 2019

Ximena Alejandra Flechas Chaparro, Leonardo Augusto de Vasconcelos Gomes and Paulo Tromboni de Souza Nascimento

The purpose of this paper is to identify how project portfolio selection (PPS) methods have evolved and which approaches are more suitable for radical innovation projects. This…

9532

Abstract

Purpose

The purpose of this paper is to identify how project portfolio selection (PPS) methods have evolved and which approaches are more suitable for radical innovation projects. This paper addressed the following research question: how have the selection approaches evolved to better fit within radical innovation conditions? The current literature offers a number of selection approaches with different and, in some cases, conflicting nature. Therefore, there is a lack of understanding regarding when and how to use these approaches in order to select a specific type of innovation projects (from incremental to more radical ones).

Design/methodology/approach

Given the nature of the research question, the authors perform a systematic literature review method and analyze 48 portfolio selection approaches. The authors then classified and characterized these articles in order to identify techniques, tools, required data and types of examined projects, among other aspects.

Findings

The authors identify four key features related to the selection of radical innovation projects: dynamism, interdependency management, uncertainty treatment and required input data. Based on the content analysis, the authors identified that approaches based on different sources and nature of data are more appropriated for uncertain conditions, such as behavioral methods, information gap theory, real options and integrated approaches.

Originality/value

The research provides a comprehensive framework about PPS methods and how they have been evolving over time. This portfolio selection framework considers the particular aspects of incremental and radical innovation projects. The authors hope that the framework contributes to reinvigorating the literature on selection approaches for innovation projects.

Details

Revista de Gestão, vol. 26 no. 3
Type: Research Article
ISSN: 2177-8736

Keywords

Open Access
Article
Publication date: 3 June 2022

Shuanbao Yao, Dawei Chen and Sansan Ding

The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the…

Abstract

Purpose

The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence, the study analyzes aerodynamic parameters with multi-objective optimization design.

Design/methodology/approach

The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics. Then the modified vehicle modeling function (VMF) parameterization method and surface discretization method are adopted for the parametric design of the nose. For the 12 key design parameters extracted, combined with computational fluid dynamics (CFD), support vector machine (SVR) model and multi-objective particle swarm optimization (MPSO) algorithm, the multi-objective aerodynamic optimization design of high-speed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint. The engineering improvement and wind tunnel test verification of the optimized shape are done.

Findings

Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train. The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.

Originality/value

Compared with the original shape, the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%, and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%, respectively, after adopting the optimized shape modified according to engineering design requirements.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 28 February 2023

Wenhui Zhou and Hongmei Yang

The authors investigate the manufacturer's choice of discount schemes in a supply chain with competing retailers.

Abstract

Purpose

The authors investigate the manufacturer's choice of discount schemes in a supply chain with competing retailers.

Design/methodology/approach

Using a game-theoretic model, the authors build two discount frameworks and compare and analyze the effects of different discount schemes on the performance of supply chain members.

Findings

The authors find that the retail price (market demand) in the quantity discount scheme is always higher (lower) than that in the market share discount scheme. The authors also find that the retailers' preference for discount schemes is antithetical to the manufacturer's preference in most cases. However, under certain conditions, there will be a win-win situation where Pareto-optimization occurs between the manufacturer and retailers when they choose the same discount scheme.

Research limitations/implications

On the one hand, the authors assume that the two retailers are symmetrical in market size and operation efficiency. It would be interesting to study the effect of different discount schemes on retailers when the retailers have different market sizes or operating efficiency. On the other hand, the authors study the manufacturer's choice of discount schemes in a supply chain with one common manufacturer and two competing retailers. However, in practice, there exist other supply chain structures. Future research can examine the problem of choices of discount schemes in other different supply chain structures.

Practical implications

This paper help retailers and manufacturers to choose the best discount schemes.

Social implications

This paper suggests that a high discount scale is not always beneficial (detrimental) to retailers (the manufacture).

Originality/value

The authors build two discount schemes (the quantity and the market share) in a supply chain consisting of one manufacturer and two retailers, and the authors focus on the effects of different discount schemes on the competition between two retailers. By comparing the two discount schemes, the authors study which discount scheme is the better choice for the manufacturer when facing competing retailers.

Details

Modern Supply Chain Research and Applications, vol. 5 no. 1
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 27 January 2023

Senyu Xu, Huajun Tang and Yuxin Huang

The purpose of this research is to investigate how to introduce a financing scheme to tackle the manufacturer's capital constraint problem, discuss the effects of data-driven…

1515

Abstract

Purpose

The purpose of this research is to investigate how to introduce a financing scheme to tackle the manufacturer's capital constraint problem, discuss the effects of data-driven marketing (DDM) quality, cross-channel-return (CCR) rate and financing interest rate on the members' pricing and delivery-lead-time decisions and optimal performances, and analyzes `how to achieve the coordination within a dual-channel supply chain (DSC) by contract coordination.

Design/methodology/approach

This work establishes a DSC model with DDM, and the offline retailer can provide internal financing to the capital-constrained online manufacturer. The demand under the price is determined based on DDM quality, customer channel preference and delivery lead time. Then, combined with the Stackelberg game, the optimal pricing and delivery-lead-time decisions are discussed under the inconsistent and consistent pricing strategies with decentralized and centralized systems. Furthermore, it designs a manufacturer-revenue sharing contract to coordinate the members under the two pricing strategies.

Findings

(1) The increase of DDM quality will reduce the delivery-lead-time under the inconsistent or consistent pricing strategy and will push the selling prices; (2) The growth of the CCR rate will raise selling prices and extend the delivery-lead-time under the decentralized decision; (3) Under price competition, the offline selling price is higher than the online selling price when customers prefer the offline channel and vice versa; (4) The retailer and the manufacturer can achieve a win-win situation through a manufacturer-revenue sharing contract.

Originality/value

This paper contributes to the studies related to DSC by investigating pricing and delivery-lead-time decisions based on DDM, CCR, internal financing and supply chain contract and proposes some managerial implications.

Details

Industrial Management & Data Systems, vol. 123 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 5 November 2020

Hongyuan Wang and Jingcheng Wang

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors…

Abstract

Purpose

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors need to identify them before further optimization. For fully considering multiple crucial performance of TBM, the authors establish an optimization problem for TBM so that it can be adapted to varying geology. That is, TBM can operate optimally under corresponding geology, which is called geology-adaptability.

Design/methodology/approach

This paper adopted k-nearest neighbor (KNN) algorithm with modification to identify geological conditions. The modification includes adjustment of weights in voting procedure and similarity distance measurement, which at suitable for engineering and enhance accuracy of prediction. The authors also design several key performances of TBM during operation, and built a multi-objective function. Further, the multi-objective function has been transformed into a single objective function by weighted-combination. The reformulated optimization was solved by genetic algorithm in the end.

Findings

This paper provides a support for decision-making in TBM control. Through proposed optimization control, the advance speed of TBM has been enhanced dramatically in each geological condition, compared with the results before optimizing. Meanwhile, other performances are acceptable and the method is verified by in situ data.

Originality/value

This paper fulfills an optimization control of TBM considering several key performances during excavating. The optimization is conducted under different geological conditions so that TBM has geological-adaptability.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 3 August 2020

Sumitra Nuanmeesri

This research has developed a one-stop service supply chain mobile application for the purpose of marketing, product distribution and location-based logistics for elderly farmers…

5000

Abstract

This research has developed a one-stop service supply chain mobile application for the purpose of marketing, product distribution and location-based logistics for elderly farmers and consumers in accordance with the Thailand 4.0 economic model. This is an investigation into the agricultural product distribution supply chain which focuses on marketing, distribution and logistics using the Dijkstra’s and Ant Colony Algorithms to respectively explore the major and minor product transport routes. The accuracy rate was determined to be 97%. The application is congruent with the product distribution, supply chain, in a value-based economy. The effectiveness of the mobile application was indicated to be at the highest level of results of learning outcomes, user comprehension and user experience of users. That is, the developed mobile application could be effectively used as a tool to support elderly farmers to distribute their agricultural products in the one-stop service supply chain which emphasizes marketing, distribution and location-based logistics for elderly farmers and consumers with respect to Thailand 4.0.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 27 July 2022

Sami Barmada, Alessandro Formisano, Dimitri Thomopulos and Mauro Tucci

This study aims to investigate the possible use of a deep neural network (DNN) as an inverse solver.

Abstract

Purpose

This study aims to investigate the possible use of a deep neural network (DNN) as an inverse solver.

Design/methodology/approach

Different models based on DNNs are designed and proposed for the resolution of inverse electromagnetic problems either as fast solvers for the direct problem or as straightforward inverse problem solvers, with reference to the TEAM 25 benchmark problem for the sake of exemplification.

Findings

Using DNNs as straightforward inverse problem solvers has relevant advantages in terms of promptness but requires a careful treatment of the underlying problem ill-posedness.

Originality/value

This work is one of the first attempts to exploit DNNs for inverse problem resolution in low-frequency electromagnetism. Results on the TEAM 25 test problem show the potential effectiveness of the approach but also highlight the need for a careful choice of the training data set.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 25 March 2024

Shivangi Viral Thakker, Santosh B. Rane and Vaibhav S. Narwane

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies…

Abstract

Purpose

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies, as they require a huge amount of resources and infrastructure. The purpose of this paper is to analyze the challenges of implementing blockchain-IoT integrated architecture in the green supply chain and develop strategies for the same.

Design/methodology/approach

After a thorough literature survey of Scopus-indexed journals and books, 37 barriers were identified, which were then brought down to 15 barriers after confirming with industry and academic experts using the Delphi method. Using the total interpretive structural modeling (TISM) method and cross-impact matrix multiplication applied to classification (MICMAC) analysis, the barriers were modeled, and finally, strategies were formulated using a concept map to handle the barriers in the blockchain-IoT integrated architecture for a green supply chain.

Findings

This paper presents the research on barriers that can be considered for incorporating blockchain and IoT in the green supply chain. It was found from the TISM model that environmental concerns are Level-1 barriers and need to be addressed by developing appropriate technology and allocating funds for the same. An integrated ecosystem with blockchain and IoT is developed.

Research limitations/implications

The focus of this study was on the challenges of blockchain and IoT; hence, it is required to extend the research and find challenges for different industries and also analyze the criteria using other multi-criteria decision-making (MCDM) methods. Further research is required for the integration of blockchain-IoT with supply chain functions.

Practical implications

The transformation of a traditional supply chain into a green supply chain is possible with the integration of technologies. This research work and the strategies developed are useful to managers and practitioners working on technology implementation. Planning resources and addressing key barriers is possible with the concept maps and architecture developed.

Social implications

Green supply chain management (SCM) is gaining importance in industry as well as the academic sector due to government Policies and norms worldwide for reducing emissions and encouraging environment-friendly production systems. Incorporating blockchain and IoT in a green supply chain will further digitize and increase transparency in supply chains.

Originality/value

We have done a categorization of all barriers based on the expert survey by academicians and industry experts from industries in India. The concept map helps in identifying possible solutions for the challenges and initiatives to be taken for the smooth integration of technologies in the green supply chain.

Details

Modern Supply Chain Research and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3871

Keywords

1 – 10 of 81