Search results

1 – 10 of over 18000
Article
Publication date: 3 July 2017

Zaher Rahimi, Wojciech Sumelka and Xiao-Jun Yang

Recently, a new formulation has been introduced for non-local mechanics in terms of fractional calculus. Fractional calculus is a branch of mathematical analysis that studies the…

Abstract

Purpose

Recently, a new formulation has been introduced for non-local mechanics in terms of fractional calculus. Fractional calculus is a branch of mathematical analysis that studies the differential operators of an arbitrary (real or complex) order and is used successfully in various fields such as mathematics, science and engineering. The purpose of this paper is to introduce a new fractional non-local theory which may be applicable in various simple or complex mechanical problems.

Design/methodology/approach

In this paper (by using fractional calculus), a fractional non-local theory based on the conformable fractional derivative (CFD) definition is presented, which is a generalized form of the Eringen non-local theory (ENT). The theory contains two free parameters: the fractional parameter which controls the stress gradient order in the constitutive relation and could be an integer and a non-integer and the non-local parameter to consider the small-scale effect in the micron and the sub-micron scales. The non-linear governing equation is solved by the Galerkin and the parameter expansion methods. The non-linearity of the governing equation is due to the presence of von-Kármán non-linearity and CFD definition.

Findings

The theory has been used to study linear and non-linear free vibration of the simply-supported (S-S) and the clamped-free (C-F) nano beams and then the influence of the fractional and the non-local parameters has been shown on the linear and non-linear frequency ratio.

Originality/value

A new parameter of the theory (the fractional parameter) makes the modeling more fixable – this model can conclude all of integer and non-integer operators and is not limited to special operators such as ENT. In other words, it allows us to use more sophisticated mathematics to model physical phenomena. On the other hand, in the comparison of classic fractional non-local theory, the theory applicable in various simple or complex mechanical problems may be used because of simpler forms of the governing equation owing to the use of CFD definition.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 December 2018

Yu Bai, Bo Xie, Yan Zhang, Yingjian Cao and Yunpeng Shen

The purpose of this paper is to investigate the two-dimensional stagnation-point flow, heat and mass transfer of an incompressible upper-convected Oldroyd-B MHD nanofluid over a…

Abstract

Purpose

The purpose of this paper is to investigate the two-dimensional stagnation-point flow, heat and mass transfer of an incompressible upper-convected Oldroyd-B MHD nanofluid over a stretching surface with convective heat transfer boundary condition in the presence of thermal radiation, Brownian motion, thermophoresis and chemical reaction. The process of heat and mass transfer based on Cattaneo–Christov double-diffusion model is studied, which can characterize the features of thermal and concentration relaxations factors.

Design/methodology/approach

The governing equations are developed and similarly transformed into a set of ordinary differential equations, which are solved by a newly approximate analytical method combining the double-parameter transformation expansion method with the base function method (DPTEM-BF).

Findings

An interesting phenomenon can be found that all the velocity profiles first enhance up to a maximal value and then gradually drop to the value of the stagnation parameter, which indicates the viscoelastic memory characteristic of Oldroyd-B fluid. Moreover, it is revealed that the thickness of the thermal and mass boundary layer is increasing with larger values of thermal and concentration relaxation parameters, which indicates that Cattaneo–Christov double-diffusion model restricts the heat and mass transfer comparing with classical Fourier’s law and Fick’s law.

Originality/value

This paper focuses on stagnation-point flow, heat and mass transfer combining the constitutive relation of upper-convected Oldroyd-B fluid and Cattaneo–Christov double diffusion model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Xiaohua Yang, Chongli Di, Ying Mei, Yu-Qi Li and Jian-Qiang Li

The purpose of this paper is to reduce the computational burden and improve the precision of the parameter optimization in the convection-diffusion equation, a new algorithm, the…

Abstract

Purpose

The purpose of this paper is to reduce the computational burden and improve the precision of the parameter optimization in the convection-diffusion equation, a new algorithm, the refined gray-encoded evolution algorithm (RGEA), is proposed.

Design/methodology/approach

In the new algorithm, the differential evolution algorithm (DEA) is introduced to refine the solutions and to improve the search efficiency in the evolution process; the rapid cycle operation is also introduced to accelerate the convergence rate. The authors apply this algorithm to parameter optimization in convection-diffusion equations.

Findings

Two cases for parameter optimization in convection-diffusion equations are studied by using the new algorithm. The results indicate that the sum of absolute errors by the RGEA decreases from 74.14 to 99.29 percent and from 99.32 to 99.98 percent, respectively, compared to those by the gray-encoded genetic algorithm (GGA) and the DEA. And the RGEA has a faster convergent speed than does the GGA or DEA.

Research limitations/implications

A more complete convergence analysis of the method is under investigation. The authors will also explore the possibility of adapting the method to identify the initial condition and boundary condition in high-dimension convection-diffusion equations.

Practical implications

This paper will have an important impact on the applications of the parameter optimization in the field of environmental flow analysis.

Social implications

This paper will have an important significance for a sustainable social development.

Originality/value

The authors establish a new RGEA algorithm for parameter optimization in solving convection-diffusion equations. The application results make a valuable contribution to the parameter optimization in the field of environmental flow analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2013

A. Jabbari, H. Kheiri and A. Yildirim

The purpose of this paper is to obtain analytic solutions of the (1+1) and (2+1)‐dimensional dispersive long wave equations by the homotopy analysis and the homotopy Padé methods.

Abstract

Purpose

The purpose of this paper is to obtain analytic solutions of the (1+1) and (2+1)‐dimensional dispersive long wave equations by the homotopy analysis and the homotopy Padé methods.

Design/methodology/approach

The obtained approximation by using homotopy method contains an auxiliary parameter which is a simple way to control and adjust the convergence region and rate of solution series.

Findings

The approximation solutions by [m,m] homotopy Padé technique is often independent of auxiliary parameter ℏ and this technique accelerates the convergence of the related series.

Originality/value

In this paper, analytic solutions of the (1+1) and (2+1)‐dimensional dispersive long wave equations are obtained by the homotopy analysis and the homotopy Padé methods. The obtained approximation by using homotopy method contains an auxiliary parameter which is a simple way to control and adjust the convergence region and rate of solution series. The approximation solutions by [m,m] homotopy Padé technique are often independent of auxiliary parameter ℏ and this technique accelerates the convergence of the related series.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 November 2016

Xiao-rong Kang and Xian Daquan

The purpose of this paper is to find out some new rational non-traveling wave solutions and to study localized structures for (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS…

Abstract

Purpose

The purpose of this paper is to find out some new rational non-traveling wave solutions and to study localized structures for (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation.

Design/methodology/approach

Along with some special transformations, the Lie group method and the rational function method are applied to the (2+1)-dimensional AKNS equation.

Findings

Some new non-traveling wave solutions are obtained, including generalized rational solutions with two arbitrary functions of time variable.

Research limitations/implications

As a typical nonlinear evolution equation, some dynamical behaviors are also discussed.

Originality/value

With the help of the Lie group method, special transformations and the rational function method, new non-traveling wave solutions are derived for the AKNS equation by Maple software. These results are much useful for investigating some new localized structures and the interaction of waves in high-dimensional models, and enrich dynamical features of solutions for the higher dimensional systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 May 2012

H. Bararnia, Z.Z. Ganji, D.D. Ganji and S.M. Moghimi

The main purpose of the work is to demonstrate the eligibility of the methods applied and to have the more reliable and user friendly approaches to find the solution of the…

Abstract

Purpose

The main purpose of the work is to demonstrate the eligibility of the methods applied and to have the more reliable and user friendly approaches to find the solution of the applicable governing equations such as of the MHD flow.

Design/methodology/approach

The numerical and semi analytical methods have been applied to solve the governing equations. The reliability of the methods is also approved by a comparison made between the results obtained and the results of the former studies performed using the other numerical approach.

Findings

The reliability of the methods are approved, so that the method could be used to discuss more in depth arguments on the different profiles of the solution.

Originality/value

It could be considered as a first endeavor to use the solution of the MHD Jeffery Hamel flow using this kind of numerical method along with the semi analytical approach.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Pengbo Wang and Jingxuan Wang

Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower…

Abstract

Purpose

Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of electric potentials in an electrostatic system efficiently with interval parameters.

Design/methodology/approach

The Taylor series expansion is proposed for evaluating the upper and lower bounds of electric potentials in an electrostatic system with interval parameters. The uncertain parameters of the electrostatic system are represented by interval notations. By performing Taylor series expansion on the electric potentials obtained using the equilibrium governing equation and by using the properties of interval mathematics, the upper and lower bounds of the electric potentials of an electrostatic system can be calculated.

Findings

To evaluate the accuracy and efficiency of the proposed method, the upper and lower bounds of the electric potentials and the computation time of the proposed method are compared with those obtained using the Monte Carlo simulation, which is referred to as a reference solution. Numerical examples illustrate that the bounds of electric potentials of this method are consistent with those obtained using the Monte Carlo simulation. Moreover, the proposed method is significantly more time-saving.

Originality/value

This paper provides a rapid computational method to estimate the upper and lower bounds of electric potentials in electrostatics analysis with interval parameters. The precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Zeyu Ma, Jinglai Wu, Yunqing Zhang and Ming Jiang

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional…

190

Abstract

Purpose

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional valve (LSPV), which is commonly used to improve the efficiency of brake system in heavy truck.

Design/methodology/approach

For this investigation, the mathematic model of LSPV is constructed in the form of state space equation. Then the estimation process is implemented relying on the experimental measurements. With the coefficients of the PC expansion obtained by the numerical implementation, the output observation function can be transformed into a linear and time-invariant form. The uncertain parameter recursively update functions based on Newton method can therefore be derived fit for computer calculation. To improve the estimation accuracy and stability, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process.

Findings

The accuracy and effectiveness of the proposed parameter estimation method are confirmed by model validation compared with other estimation methods. Meanwhile, the influence of measurement noise on the robustness of the estimation methods is taken into consideration, and it is shown that the estimation approach developed in this paper could achieve impressive stability without compromising the convergence speed and accuracy too much.

Originality/value

The model of LSPV is originally developed in this paper, and then the authors propose a novel effective strategy for recursively estimating uncertain parameters of complicate pneumatic system based on the PC theory.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Functional Structure and Approximation in Econometrics
Type: Book
ISBN: 978-0-44450-861-4

1 – 10 of over 18000