Search results

1 – 10 of 23
Article
Publication date: 5 October 2022

Sophiya Shiekh, Mohammad Shahid, Manas Sambare, Raza Abbas Haidri and Dileep Kumar Yadav

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be…

67

Abstract

Purpose

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be done optimally to achieve proficient results in a cloud computing environment. While satisfying the user’s requirements in a cloud environment, scheduling has been proven an NP-hard problem. Therefore, it leaves scope to develop new allocation models for the problem. The aim of the study is to develop load balancing method to maximize the resource utilization in cloud environment.

Design/methodology/approach

In this paper, the parallelized task allocation with load balancing (PTAL) hybrid heuristic is proposed for jobs coming from various users. These jobs are allocated on the resources one by one in a parallelized manner as they arrive in the cloud system. The novel algorithm works in three phases: parallelization, task allocation and task reallocation. The proposed model is designed for efficient task allocation, reallocation of resources and adequate load balancing to achieve better quality of service (QoS) results.

Findings

The acquired empirical results show that PTAL performs better than other scheduling strategies under various cases for different QoS parameters under study.

Originality/value

The outcome has been examined for the real data set to evaluate it with different state-of-the-art heuristics having comparable objective parameters.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 September 2023

Antonio Llanes, Baldomero Imbernón Tudela, Manuel Curado and Jesús Soto

The authors will review the main concepts of graphs, present the implemented algorithm, as well as explain the different techniques applied to the graph, to achieve an efficient…

Abstract

Purpose

The authors will review the main concepts of graphs, present the implemented algorithm, as well as explain the different techniques applied to the graph, to achieve an efficient execution of the algorithm, both in terms of the use of multiple cores that the authors have available today, and the use of massive data parallelism through the parallelization of the algorithm, bringing the graph closer to the execution through CUDA on GPUs.

Design/methodology/approach

In this work, the authors approach the graphs isomorphism problem, approaching this problem from a point of view very little worked during all this time, the application of parallelism and the high-performance computing (HPC) techniques to the detection of isomorphism between graphs.

Findings

Results obtained give compelling reasons to ensure that more in-depth studies on the HPC techniques should be applied in these fields, since gains of up to 722x speedup are achieved in the most favorable scenarios, maintaining an average performance speedup of 454x.

Originality/value

The paper is new and original.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 March 2023

Dimitrios I. Karatzidis, Theodoros T. Zygiridis and Nikolaos V. Kantartzis

The purpose of this paper is to present a family of robust metasurface-oriented wireless power transfer systems with improved efficiency and size compactness. The effect of…

Abstract

Purpose

The purpose of this paper is to present a family of robust metasurface-oriented wireless power transfer systems with improved efficiency and size compactness. The effect of geometric and structural features on the overall efficiency and miniaturisation is elaborately studied, while the presence of substrate losses is, also, considered. Moreover, to further enhance the performance, possible means for reducing the operating frequency, without comprising the unit-cell size, are proposed.

Design/methodology/approach

The key element of the design technique is the edge-coupled split-ring resonators patterned in various metasurface configurations and optimally placed to increase the total efficiency. To this goal, a rigorous three-dimensional algorithm, launching a new high-order prism macroelement, is developed in this paper for the fast evaluation of the required quantities. The featured scheme can host diverse approximation orders, while it is drastically more economical than existing methods. Hence, the demanding wireless power transfer systems are precisely modelled via reduced degrees of freedom, without the need to conduct large-scale simulations.

Findings

Numerical results, compared with measured data from fabricated prototypes, validate the design methodology and prove its competence to provide enhanced metasurface wireless power transfer systems. An assortment of optimized 3 x 3 and 5 x 5 metamaterial setups is investigated, and interesting deductions, regarding the impact of the inter-element gaps, the distance between the transmitting and receiving components and the substrate losses, are derived. Also, the proposed vector macroelement technique overwhelms typical implementations in terms of computational burden, particularly when combined with the relevant commercial software packages.

Originality/value

Systematic design of advanced real-world wireless power transfer structures through optimally selected metasurfaces with fully controllable electromagnetic properties is presented. The analysis is performed by means of a rapid prism macroelement methodology, which leads to very confined meshes, accurate results and significantly reduced overhead. The selected metamaterial resonators are found to be very flexible and reconfigurable, even in the case of large substrate conductivity losses, whereas their contribution to the system’s total efficiency is decisive.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2023

Amir Rezaei

This paper aims to study the feasibility of using machine learning in hot corrosion prediction of Inconel 617 alloy.

Abstract

Purpose

This paper aims to study the feasibility of using machine learning in hot corrosion prediction of Inconel 617 alloy.

Design/methodology/approach

By examination of the experimental studies on hot corrosion of Inconel 617, a data set was built for machine learning models. Apart from the alloy composition, this paper included the condition of hot corrosion like time and temperature, and the composition of the saline medium as independent features, while the specific mass change is set as the target feature. In this paper, linear regression, random forest and XGBoost are used to predict the specific mass gain of Inconel 617.

Findings

XGBoost yields the coefficient of determination (R2) of 0.98, which was highest among models. Also, this model recorded the lowest value of mean absolute error (0.20). XGBoost had the best performance in predicting specific mass gain of the alloy in different times at temperature of 900°C. In sum, XGBoost shows highest accuracy in predicting specific mass gain for Inconel 617.

Originality/value

Using machine learning to predict hot corrosion in Inconel 617 marks a substantial progress in this domain and holds promise for simplifying the development and evaluation of novel materials featuring enhanced hot corrosion resilience.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 28 July 2020

Julián Monsalve-Pulido, Jose Aguilar, Edwin Montoya and Camilo Salazar

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently…

1792

Abstract

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently recommending digital resources. The paper presents the architectural details of the intelligent and autonomous dimensions of the recommendation system. The paper describes a hybrid recommendation model that orchestrates and manages the available information and the specific recommendation needs, in order to determine the recommendation algorithms to be used. The hybrid model allows the integration of the approaches based on collaborative filter, content or knowledge. In the architecture, information is extracted from four sources: the context, the students, the course and the digital resources, identifying variables, such as individual learning styles, socioeconomic information, connection characteristics, location, etc. Tests were carried out for the creation of an academic course, in order to analyse the intelligent and autonomous capabilities of the architecture.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Book part
Publication date: 10 May 2023

Jagjit Singh Dhatterwal and Kuldeep Singh Kaswan

Purpose: Cryptocurrency technology has improved fast in the social economy and growth. Because cryptocurrency has many good qualities, it is initially employed for Bitcoin…

Abstract

Purpose: Cryptocurrency technology has improved fast in the social economy and growth. Because cryptocurrency has many good qualities, it is initially employed for Bitcoin transactions.

Methodology: With the advent of Bitcoin, the link between distributed ledger technology (DLT) and the banking market has become stronger and more integrated. As more banking institutions understood the relevance of DLT, they began experimenting with using it in financial activities, such as R3CEV, Hyperledger, and Qiwi.

Findings: Many commercial organisations are beginning to experiment with DLT to reduce transactional costs and boost operational effectiveness, particularly in financial notes, cross-border payments, and asset-backed financing.

Practical Implications: DLT has many potential applications in banking domains in the upcoming years.

Details

Contemporary Studies of Risks in Emerging Technology, Part A
Type: Book
ISBN: 978-1-80455-563-7

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2023

Niels Koester, Franz Pichler and Oszkar Biro

The purpose of this paper is to introduce a new method to model a stranded wire efficiently in 3D finite element simulations.

Abstract

Purpose

The purpose of this paper is to introduce a new method to model a stranded wire efficiently in 3D finite element simulations.

Design/methodology/approach

In this method, the stranded wires are numerically approximated with the Cauer ladder network (CLN) model order reduction method in 2D. This approximates the eddy current effect such as the skin and proximity effect for the whole wire. This is then projected to a mesh which does not include each strand. The 3D fields are efficiently calculated with the CLN method and are projected in the 3D geometry to be used in simulations of electrical components with a current vector potential and a homogenized conductivity at each time step.

Findings

In applications where the stranded wire geometry is known and does not change, this homogenization approach is an efficient and accurate method, which can be used with any stranded wire configuration, homogenized stranded wire mesh and any input signal dependent on time steps or frequencies.

Originality/value

In comparison to other methods, this method has no direct frequency dependency, which makes the method usable in the time domain for an arbitrary input signal. The CLN can also be used to interconnected stranded cables arbitrarily in electrical components.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 August 2023

Anett Kenderes, Szabolcs Gyimóthy and Péter Tamás Benkő

Global sensitivity analysis (SA) by means of Sobol’ indices enhanced with different surrogate modeling techniques is performed in this work. The purpose is to investigate the…

Abstract

Purpose

Global sensitivity analysis (SA) by means of Sobol’ indices enhanced with different surrogate modeling techniques is performed in this work. The purpose is to investigate the influence of measurement uncertainties and the environment characteristics themselves on the desired field uniformity in reverberation chambers (RCs). This yields an efficient apparatus for the stirring and chamber design process.

Design/methodology/approach

The technique of Sobol’ indices, as a candidate of global SA methods, is suitable for high fluctuations due to its robustness, which can be addressed to the stochastic nature of the RC environment. The aim of using surrogate modeling techniques is to compute the indices efficiently with a moderate number of required simulations. The powerfulness of this approach is introduced in a simple numerical example in which the physical phenomena can be identified more straightforwardly.

Findings

This method can provide useful knowledge in the lower frequency range, where the ideal properties of the electromagnetic field in RCs cannot be established, and the importance of the setup parameters can vary from configuration to configuration. In addition, it can serve as a basis for setup adaptation during parallelized electromagnetic compatibility tests, which would result in a more time- and cost-saving option in industrial applications in the future.

Originality/value

Despite the previous attempts, a profound investigation of multiple setup parameters is still a hot topic. The main contribution of this work is the extension of the application area of the method of Sobol’ indices to RCs, which has not been done so far.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 September 2023

Cheng Liu, Yi Shi, Wenjing Xie and Xinzhong Bao

This paper aims to provide a complete analysis framework and prediction method for the construction of the patent securitization (PS) basic asset pool.

Abstract

Purpose

This paper aims to provide a complete analysis framework and prediction method for the construction of the patent securitization (PS) basic asset pool.

Design/methodology/approach

This paper proposes an integrated classification method based on genetic algorithm and random forest algorithm. First, comprehensively consider the patent value evaluation model and SME credit evaluation model, determine 17 indicators to measure the patent value and SME credit; Secondly, establish the classification label of high-quality basic assets; Then, genetic algorithm and random forest model are used to predict and screen high-quality basic assets; Finally, the performance of the model is evaluated.

Findings

The machine learning model proposed in this study is mainly used to solve the screening problem of high-quality patents that constitute the underlying asset pool of PS. The empirical research shows that the integrated classification method based on genetic algorithm and random forest has good performance and prediction accuracy, and is superior to the single method that constitutes it.

Originality/value

The main contributions of the article are twofold: firstly, the machine learning model proposed in this article determines the standards for high-quality basic assets; Secondly, this article addresses the screening issue of basic assets in PS.

Details

Kybernetes, vol. 53 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 23