Search results

1 – 10 of 341
Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 31 July 2019

Yitao Pan, Yuan Chen and Lin Li

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s…

1170

Abstract

Purpose

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.

Design/methodology/approach

First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.

Findings

Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.

Research limitations/implications

The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.

Practical implications

It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.

Social implications

The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).

Originality/value

In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 4 January 2013

138

Abstract

Details

Industrial Robot: An International Journal, vol. 40 no. 1
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 June 2004

84

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 February 2004

Jon Rigelsford

56

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 April 2000

104

Abstract

Details

Industrial Robot: An International Journal, vol. 27 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available

Abstract

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Content available

Abstract

Details

Industrial Robot: An International Journal, vol. 38 no. 1
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 October 2004

Jon Rigelsford

157

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 16 October 2009

48

Abstract

Details

Industrial Robot: An International Journal, vol. 36 no. 6
Type: Research Article
ISSN: 0143-991X

1 – 10 of 341