Search results

1 – 10 of 137
Article
Publication date: 17 April 2024

Bingwei Gao, Hongjian Zhao, Wenlong Han and Shilong Xue

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and…

Abstract

Purpose

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and verifies its decoupling effect..

Design/methodology/approach

The machine–hydraulic cross-linking coupling is studied as the coupling behavior of the hydraulically driven quadruped robot, and the mechanical dynamics coupling force of the robot system is controlled as the disturbance force of the hydraulic system through the Jacobian matrix transformation. According to the principle of multivariable decoupling, a prediction-based neural network model reference decoupling control method is proposed; each module of the control algorithm is designed one by one, and the stability of the system is analyzed by the Lyapunov stability theorem.

Findings

The simulation and experimental research on the robot joint decoupling control method is carried out, and the prediction-based neural network model reference decoupling control method is compared with the decoupling control method without any decoupling control method. The results show that taking the coupling effect experiment between the hip joint and knee joint as an example, after using the predictive neural network model reference decoupling control method, the phase lag of the hip joint response line was reduced from 20.3° to 14.8°, the amplitude attenuation was reduced from 1.82% to 0.21%, the maximum error of the knee joint coupling line was reduced from 0.67 mm to 0.16 mm and the coupling effect between the hip joint and knee joint was reduced from 1.9% to 0.48%, achieving good decoupling.

Originality/value

The prediction-based neural network model reference decoupling control method proposed in this paper can use the neural network model to predict the next output of the system according to the input and output. Finally, the weights of the neural network are corrected online according to the predicted output and the given reference output, so that the optimization index of the neural network decoupling controller is extremely small, and the purpose of decoupling control is achieved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 March 2024

Rong Jiang, Bin He, Zhipeng Wang, Xu Cheng, Hongrui Sang and Yanmin Zhou

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show…

Abstract

Purpose

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show more promising potential to cope with the challenges brought by increasingly complex tasks and environments, which have become the hot research topic in the field of robot skill learning. However, the contradiction between the difficulty of collecting robot–environment interaction data and the low data efficiency causes all these methods to face a serious data dilemma, which has become one of the key issues restricting their development. Therefore, this paper aims to comprehensively sort out and analyze the cause and solutions for the data dilemma in robot skill learning.

Design/methodology/approach

First, this review analyzes the causes of the data dilemma based on the classification and comparison of data-driven methods for robot skill learning; Then, the existing methods used to solve the data dilemma are introduced in detail. Finally, this review discusses the remaining open challenges and promising research topics for solving the data dilemma in the future.

Findings

This review shows that simulation–reality combination, state representation learning and knowledge sharing are crucial for overcoming the data dilemma of robot skill learning.

Originality/value

To the best of the authors’ knowledge, there are no surveys that systematically and comprehensively sort out and analyze the data dilemma in robot skill learning in the existing literature. It is hoped that this review can be helpful to better address the data dilemma in robot skill learning in the future.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 April 2024

Xiaona Wang, Jiahao Chen and Hong Qiao

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control…

Abstract

Purpose

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control face a bottleneck problem. The aim of this paper is to design a method to improve the motion performance of musculoskeletal robots in partially observable scenarios, and to leverage the ontology knowledge to enhance the algorithm’s adaptability to musculoskeletal robots that have undergone changes.

Design/methodology/approach

A memory and attention-based reinforcement learning method is proposed for musculoskeletal robots with prior knowledge of muscle synergies. First, to deal with partially observed states available to musculoskeletal robots, a memory and attention-based network architecture is proposed for inferring more sufficient and intrinsic states. Second, inspired by muscle synergy hypothesis in neuroscience, prior knowledge of a musculoskeletal robot’s muscle synergies is embedded in network structure and reward shaping.

Findings

Based on systematic validation, it is found that the proposed method demonstrates superiority over the traditional twin delayed deep deterministic policy gradients (TD3) algorithm. A musculoskeletal robot with highly redundant, nonlinear muscles is adopted to implement goal-directed tasks. In the case of 21-dimensional states, the learning efficiency and accuracy are significantly improved compared with the traditional TD3 algorithm; in the case of 13-dimensional states without velocities and information from the end effector, the traditional TD3 is unable to complete the reaching tasks, while the proposed method breaks through this bottleneck problem.

Originality/value

In this paper, a novel memory and attention-based reinforcement learning method with prior knowledge of muscle synergies is proposed for musculoskeletal robots to deal with partially observable scenarios. Compared with the existing methods, the proposed method effectively improves the performance. Furthermore, this paper promotes the fusion of neuroscience and robotics.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 27 November 2023

Ayodeji Emmanuel Oke, John Aliu, Samuel Bankole Oni and Oluwadamilare Olamide Ilesanmi

The purpose of this study is to investigate the obstacles to mechatronics adoption in the construction industry from a Nigerian perspective. It aims to fill the knowledge gap by…

Abstract

Purpose

The purpose of this study is to investigate the obstacles to mechatronics adoption in the construction industry from a Nigerian perspective. It aims to fill the knowledge gap by focusing on the specific challenges faced in developing countries, considering the unique contexts and constraints of the Nigerian construction industry.

Design/methodology/approach

The study used a comprehensive literature review to identify 26 obstacles to mechatronics adoption. These obstacles were used to develop a well-structured questionnaire, which was then distributed to construction professionals using Google Forms through purposive and snowball sampling techniques. The rankings obtained from the questionnaire responses were analyzed to determine the most significant obstacles.

Findings

The study revealed the top five most significant obstacles to mechatronics adoption in the Nigerian construction industry. These obstacles include high costs of operation and maintenance, resistance to adopting new technologies, a lack of standardized protocols, insufficient maintenance capabilities and a lack of government support. Factor analysis revealed five clusters of obstacles: technological-related factors, economic-related factors, capability-related factors, government-related factors and awareness-related factors.

Practical implications

Findings from this study have the potential to inform decision-making, drive policy changes and guide future research efforts aimed at promoting the widespread adoption of mechatronics technologies, ultimately leading to the transformation and improvement of the construction industry as a whole.

Originality/value

This study contributes to the field of mechatronics adoption in the construction industry by addressing the gap in research specific to developing countries such as Nigeria. By identifying and analyzing the obstacles from a Nigerian perspective, the study offers unique insights and original findings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 27 October 2023

Huijie Zhong, Xinran Zhang, Kam C. Chan and Chao Yan

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or…

Abstract

Purpose

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or industry level in the context of developed countries. This study examines the impact of imported industrial robots on firm innovation at the firm level in China.

Design/methodology/approach

Drawing on a large dataset of more than three million records in China, including non-publicly traded small and medium firms, the authors adopt a difference-in-differences method to investigate the impact and channels of industrial robots on firm innovation.

Findings

The authors find that the application of industrial robots increases firm innovation. Two possible channels are identified through which robots promote innovation: alleviation of financial constraints and the improvement of human capital. Further analysis shows that the effect of robots on innovation is more pronounced for firms that are highly dependent on external financing, belong to high-tech industries, import high-end robots, have insufficient supply of skilled labor and private firms (non-SOEs). The authors also find that industrial robots increase the firms' innovation quality and the marginal contribution of innovation to firms' total factor productivity.

Originality/value

This study provides big data evidence of the unintended positive consequences of industrial robots on firm innovation. The results are helpful to clarify the controversy of industrial robots. It also has important implications for government industrial policy making, firm innovation and human resource management.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

1 – 10 of 137