Search results

1 – 10 of over 3000
Article
Publication date: 8 August 2016

Vladimir Kobelev

The purpose of this paper is to introduce the double-periodic lattice, composed of bending-resistant fibers. The essence of the model is that the filaments are of infinite length…

Abstract

Purpose

The purpose of this paper is to introduce the double-periodic lattice, composed of bending-resistant fibers. The essence of the model is that the filaments are of infinite length and withstand tension and bending. The constitutive equations of the lattice in discrete and differential formulations are derived. Two complementary systems of loads, which cause different deformation two orthogonal families of fibers, occur in the lattice. The fracture behavior of the material containing a semi-infinite crack is investigated. The crack problem reduces to the exactly solvable Riemann-Hilbert problem. The solution demonstrates that the behavior of material cardinally depends upon the tension in the orthogonal family of fibers. If tension in fibers exists, opening of the crack under action of loads in two-dimensional lattice is similar to those in elastic solid. In the absence of tension, contrarily, there is a finite angle between edges at the crack tip.

Design/methodology/approach

The description of stress state in the crack vicinity is reduced to the solution of mixed boundary value problem for simultaneous difference equations. In terms of Fourier images for unknown functions the problem is equivalent to a certain Riemann-Hilbert problem.

Findings

The analytical solution of the problem shows that fracture behavior of the material depends upon the presence of stabilizing tension in fibers, parallel to crack direction. In the presence of tension in parallel fibers fracture character of two-dimensional lattice is similar to behavior of elastic solid. In this case the condition of crack grows can be formulated in terms of critical stress intensity factor. Otherwise, in the absence of stabilizing tension, the crack surfaces form a finite angle at the tip.

Research limitations/implications

Linear behavior of fibers until rupture. Small deflections. Perfect two-dimensional lattice.

Practical implications

The model provides exact analytical estimation of stresses on the crack tip as the function of fibers’ stiffness.

Originality/value

The model is the extension of known lattice models, taking into account the semi-infinite crack in the lattice. This is the first known closed form solution for an infinite lattice model with the crack.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 May 2013

Shashikant J. Joshi and Smita Manepatil

The determination of stress intensity factors (SIF) is of fundamental importance in prediction of brittle failure using linear elastic fracture mechanics. The presence of a crack

Abstract

Purpose

The determination of stress intensity factors (SIF) is of fundamental importance in prediction of brittle failure using linear elastic fracture mechanics. The presence of a crack in the vicinity of another crack induces an interaction effect. The purpose of this paper is to determine the SIF for an orthotropic lamina subjected to uniaxial loading and containing two cracks. The solution is obtained for one crack being horizontal and located in the centre of lamina while the other crack is inclined to first one. The effect of angle of the second crack, fibre angle is studied. Also, for the case of two parallel cracks, effect of eccentricity in x and y directions is observed.

Design/methodology/approach

Boundary collocation method is used and stress functions satisfying governing equations in the domain and ensuring stress singularity at the crack tips are defined. The boundary condition on the edges of lamina and the crack is satisfied to determine the complex coefficients in the stress functions.

Findings

For the given fibre angle, orientations of second crack which result in increase/decrease in the SIF at the most dangerous crack tip are found out.

Originality/value

Boundary collocation method which is simple and efficient is extended for studying two crack problem in orthotropic materials.

Details

International Journal of Structural Integrity, vol. 4 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1989

René de Borst and Jan G. Rots

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are…

Abstract

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are not always suppressed by surrounding elements. This is exemplified for a double‐notched concrete beam and for a Crack‐Line‐Wedge‐Loaded Double‐Cantilever‐Beam (CLWL—DCB). The latter example has been analysed for a large variety of finite elements and integration schemes. To investigate the phenomenon in greater depth an eigenvalue analysis has been carried out for some commonly used finite elements.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 August 2023

Fatima Barrarat, Karim Rayane, Bachir Helifa, Samir Bensaid and Iben Khaldoun Lefkaier

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their…

Abstract

Purpose

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their ability to detect cracks that are not perpendicular to induced current flows. This study aims to investigate the application of the rotating electromagnetic field method to detect arbitrary orientation defects in conductive nonferrous parts. This method significantly improves the detection of cracks of any orientation.

Design/methodology/approach

A new rotating uniform eddy current (RUEC) probe is presented. Two exciting pairs consisting of similar square-shaped coils are arranged orthogonally at the same lifting point, thus avoiding further adjustment of the excitation system to generate a rotating electromagnetic field, eliminating any need for mechanical rotation and focusing this field with high density. A circular detection coil serving as a receiver is mounted in the middle of the excitation system.

Findings

A simulation model of the rotating electromagnetic field system is performed to determine the rules and characteristics of the electromagnetic signal distribution in the defect area. Referring to the experimental results aimed to detect artificial cracks at arbitrary angles in underwater structures using the rotating alternating current field measurement (RACFM) system in Li et al. (2016), the model proposed in this paper is validated.

Originality/value

CEDRAT FLUX 3D simulation results showed that the proposed probe can detect cracks with any orientation, maintaining the same sensitivity, which demonstrates its effectiveness. Furthermore, the proposed RUEC probe, associated with the exploitation procedure, allows us to provide a full characterization of the crack, namely, its length, depth and orientation in a one-pass scan, by analyzing the magnetic induction signal.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 October 2018

Fuyuan Gong, Yuya Takahashi and Koichi Maekawa

This paper aims to propose a multi-scale simulation approach for the concrete macro-mechanical damage caused by mixed micro-pore pressures, such as the coupled alkali–silica…

Abstract

Purpose

This paper aims to propose a multi-scale simulation approach for the concrete macro-mechanical damage caused by mixed micro-pore pressures, such as the coupled alkali–silica reaction (ASR) and freeze-thaw cycles (FTC).

Design/methodology/approach

The micro-physical events are computationally modeled by considering the coupling effect between ASR gel and condensed water in the mixed pressure and motion. The pressures and transport of pore substances are also linked with the concrete matrix deformation at macro-scale through a poro-mechanical approach, and affect each other, reciprocally. Once the crack happens in the nonlinear analysis, both the micro-events (water and gel motion) and the macro mechanics will be mutually interacted. Finally, different sequences of combined ASR and FTC are simulated.

Findings

The multi-chemo mechanistic computation can reproduce complex events in pore structures, and further the macro-damages. The results show that ASR can reduce the FTC expansion for non-air-entrained concrete, but may increase the frost damage for air-entrained concrete. The simulation is examined to bring about the observed phenomena.

Originality/value

This paper numerically clarifies the strong linkage between macro-mechanical deformation and micro-chemo-physical events for concrete composites under coupled ASR and FTC.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2013

Mário Pimentel and Joaquim Figueiras

The purpose of this paper is to present the implementation in a finite element (FE) code of a recently developed material model for the analysis of cracked reinforced concrete…

Abstract

Purpose

The purpose of this paper is to present the implementation in a finite element (FE) code of a recently developed material model for the analysis of cracked reinforced concrete (RC) panels. The model aims for the efficient nonlinear analysis of large‐scale structural elements that can be considered as an assembly of membrane elements, such as bridge girders, shear walls, transfer beams or containment structures.

Design/methodology/approach

In the proposed constitutive model, the equilibrium equations of the cracked membrane element are established directly at the cracks while the compatibility conditions are expressed in terms of spatially averaged strains. This allows the well‐known mechanical phenomena governing the behaviour of cracked concrete elements – such as aggregate interlock (including crack dilatancy effects), tensile fracture and bond shear stress transfer – to be taken into account in a transparent manner using detailed phenomenological models. The spatially averaged stress and strain fields are obtained as a by‐product of the local behaviour at the cracks and of the bond stress transfer mechanisms, allowing the crack spacing and crack widths to be obtained directly from first principles. The model is implemented in an FE code following a total formulation.

Findings

The fact that the updated stresses at the cracks are calculated explicitly from the current spatially averaged total strains and from the updated values of the state variables that are used to monitor damage evolution contributes to the robustness and efficiency of the implementation. Some application examples are presented illustrating the model capabilities and good estimates of the failure modes, failure loads, deformation capacity, cracking patterns and crack widths were achieved.

Originality/value

While being computationally efficient, the model describes the complex stress and strain fields developing in the membrane element, and retrieves useful information for the structural engineer, such as concrete and reinforcement failures as well as the crack spacing and crack widths.

Details

Engineering Computations, vol. 30 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2011

Markus Klein, Bernd‐Robert Höhn, Klaus Michaelis and Rainer Annast

A failure mode called “flank breakage” is increasingly observed in cylindrical and bevel gears. Up to now, there was no calculation method available to determine the load‐carrying…

Abstract

Purpose

A failure mode called “flank breakage” is increasingly observed in cylindrical and bevel gears. Up to now, there was no calculation method available to determine the load‐carrying capacity related to flank breakage in bevel gears. Therefore, a research project was initiated to investigate the described failure mode in bevel gears and to develop a calculation method to predict the risk of flank breakage of such gears. The purpose of this paper is to describe this project.

Design/methodology/approach

The presented research project contained: determination of the decisive influence parameters in experimental investigations with bevel gears; development of a model to explain flank breakage in bevel gears; and development of a calculation method and design rules to avoid flank breakage.

Findings

In systematic tests, the influenced parameters of flank breakage were investigated. Besides the load torque, especially the case depth and the core hardness turned out as decisive parameters. A higher sulfur concentration in the material does not seem to be critical. The analysis of damage patterns of test and practical gears showed that the initiating crack always started below the surface in the region of the transition from case to core. For unidirectional loading, the crack propagates to the active flank on the one side and to the tooth root on the other side. On the basis of these findings, a local and a simplified calculation method were developed to estimate the risk of flank breakage.

Originality/value

With the described calculation method, it is now possible to evaluate running gears according to their risk of flank breakage and design new gears with a sufficient safety factor to avoid this failure.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2005

Szabolcs Gyimóthy and József Pávó

To propose a novel method for defect reconstruction in electromagnetic non‐destructive testing (NDT).

Abstract

Purpose

To propose a novel method for defect reconstruction in electromagnetic non‐destructive testing (NDT).

Design/methodology/approach

The inversion method is based on an optimized database that contains the measured signals for some predefined defect prototypes. The database is supported by an anisotropic simplex mesh, which has been generated adaptively in the abstract n‐dimensional space, spanned by the model parameters of the defect type. The actual reconstruction reduces to a mesh search and interpolation. The described theory is demonstrated in the paper by a solved NDT test problem.

Findings

We have realized that in addition to sole defect reconstruction, the database provides meta‐information about the quality of the inversion, the suitability of the chosen defect model parameters, as well as the capabilities of the testing experiment.

Research limitations/implications

Defect models having several parameters require a sophisticated mesh generation algorithm, which works in higher dimensions.

Originality/value

In the authors' opinion the mesh database approach offers a totally new point of view of a given inverse problem, and may help in the better understanding of its nature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 August 2011

Luis Kosteski, Ignacio Iturrioz, Ruben Galiano Batista and Adrián P. Cisilino

The purpose of this paper is to further develop the truss‐like discrete element method (DEM) in order to make it suitable to deal with damage and fracture problems.

Abstract

Purpose

The purpose of this paper is to further develop the truss‐like discrete element method (DEM) in order to make it suitable to deal with damage and fracture problems.

Design/methodology/approach

Finite and boundary elements are the best developed methods in the field of numerical fracture and damage mechanics. However, these methods are based on a continuum approach, and thus, the modelling of crack nucleation and propagation could be sometimes a cumbersome task. Besides, discrete methods possess the natural ability to introduce discontinuities in a very direct and intuitive way by simply breaking the link between their discrete components. Within this context, the present work extends the capabilities of a truss‐like DEM via the introduction of three novel features: a tri‐linear elasto‐plastic constitutive law; a methodology for crack discretization and the computation of stress intensity factors; and a methodology for the computation of the stress field components from the unixial discrete‐element results.

Findings

Obtained results show the suitability and the performance of the proposed methodologies to solve static and dynamic crack problems (including crack propagation) in brittle and elasto‐plastic materials. Computed results are in good agreement with experimental and numerical results reported in the bibliography.

Research limitations/implications

This paper demonstrates the versatility of the truss‐like DEM to deal with damage mechanics problems. The approach used in this work can be extended to the implementation of time‐dependent damage mechanisms. Besides, the capabilities of the discrete approach could be exploited by coupling the truss‐like DEM to finite and boundary element methods. Coupling strategies would allow using the DEM to model the regions of the problem where crack nucleation and propagation occurs, while finite or boundary elements are used to model the undamaged regions.

Originality/value

The scope of the truss‐like DEM has been extended. New procedures have been introduced to deal with elastoplastic‐crack problems and to improve the post processing of the stress results.

Article
Publication date: 30 April 2020

Xingyang Chen, Linlin Ma, Haoping Xie, Fengting Zhao, Yufeng Ye and Lin Zhang

The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation in the…

Abstract

Purpose

The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation in the presence of hydrogen gas.

Design/methodology/approach

The effects of external hydrogen on hydrogen-assisted crack initiation in type 304 stainless steel were discussed by performing fatigue crack growth rate and fatigue life tests in 5 MPa argon and hydrogen.

Findings

Hydrogen can reduce the incubation period of fatigue crack initiation of smooth fatigue specimens and greatly promote the fatigue crack growth rate during the subsequent fatigue cycle. During the fatigue cycle, hydrogen invades into matrix through the intrusion and extrusion and segregates at the boundaries of α′ martensite and austenite. As the fatigue cycle increased, hydrogen-induced cracks would initiate along the slip bands. The crack initiation progress would greatly accelerate in the presence of hydrogen.

Originality/value

To the best of the authors’ knowledge, this paper is an original work carried out by the authors on the hydrogen environment embrittlement of type 304 stainless steel. The effects of external hydrogen and argon were compared to provide understanding on the hydrogen-assisted crack initiation behaviors during cycle loading.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 3000