Search results

1 – 10 of over 20000
Article
Publication date: 1 October 2008

P. de Jager

Empirical accounting research frequently makes use of data sets with a time‐series and a cross‐sectional dimension ‐ a panel of data. The literature review indicates that…

Abstract

Empirical accounting research frequently makes use of data sets with a time‐series and a cross‐sectional dimension ‐ a panel of data. The literature review indicates that South African researchers infrequently allow for heterogeneity between firms when using panel data and the empirical example shows that regression results that allow for firm heterogeneity are materially different from regression results that assume homogeneity among firms. The econometric analysis of panel data has advanced significantly in recent years and accounting researchers should benefit from those improvements.

Details

Meditari Accountancy Research, vol. 16 no. 2
Type: Research Article
ISSN: 1022-2529

Keywords

Book part
Publication date: 18 October 2019

Mohammad Arshad Rahman and Angela Vossmeyer

This chapter develops a framework for quantile regression in binary longitudinal data settings. A novel Markov chain Monte Carlo (MCMC) method is designed to fit the model…

Abstract

This chapter develops a framework for quantile regression in binary longitudinal data settings. A novel Markov chain Monte Carlo (MCMC) method is designed to fit the model and its computational efficiency is demonstrated in a simulation study. The proposed approach is flexible in that it can account for common and individual-specific parameters, as well as multivariate heterogeneity associated with several covariates. The methodology is applied to study female labor force participation and home ownership in the United States. The results offer new insights at the various quantiles, which are of interest to policymakers and researchers alike.

Details

Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B
Type: Book
ISBN: 978-1-83867-419-9

Keywords

Article
Publication date: 10 August 2020

Rohit Apurv and Shigufta Hena Uzma

The purpose of the paper is to examine the impact of infrastructure investment and development on economic growth in Brazil, Russia, India, China and South Africa (BRICS…

Abstract

Purpose

The purpose of the paper is to examine the impact of infrastructure investment and development on economic growth in Brazil, Russia, India, China and South Africa (BRICS) countries. The effect is examined for each country separately and also collectively by combining each country.

Design/methodology/approach

Ordinary least square regression method is applied to examine the effects of infrastructure investment and development on economic growth for each country. Panel data techniques such as panel least square method, panel least square fixed-effect model and panel least square random effect model are used to examine the collective impact by combining all countries in BRICS. The dynamic panel model is also incorporated for analysis in the study.

Findings

The results of the study are mixed. The association between infrastructure investment and development and economic growth for countries within BRICS is not robust. There is an insignificant relationship between infrastructure investment and development and economic growth in Brazil and South Africa. Energy and transportation infrastructure investment and development lead to economic growth in Russia. Telecommunication infrastructure investment and development and economic growth have a negative relationship in India, whereas there is a negative association between transport infrastructure investment and development and economic growth in China. Panel data results conclude that energy infrastructure investment and development lead to economic growth, whereas telecommunication infrastructure investment and development are significant and negatively linked with economic growth.

Originality/value

The study is novel as time series analysis and panel data analysis are used, taking the time span for 38 years (1980–2017) to investigate the influence of infrastructure investment and development on economic growth in BRICS Countries. Time-series regression analysis is used to test the impact for individual countries separately, whereas panel data regression analysis is used to examine the impact collectively for all countries in BRICS.

Details

Indian Growth and Development Review, vol. 14 no. 1
Type: Research Article
ISSN: 1753-8254

Keywords

Article
Publication date: 15 May 2017

Felix Canitz, Panagiotis Ballis-Papanastasiou, Christian Fieberg, Kerstin Lopatta, Armin Varmaz and Thomas Walker

The purpose of this paper is to review and evaluate the methods commonly used in accounting literature to correct for cointegrated data and data that are neither…

Abstract

Purpose

The purpose of this paper is to review and evaluate the methods commonly used in accounting literature to correct for cointegrated data and data that are neither stationary nor cointegrated.

Design/methodology/approach

The authors conducted Monte Carlo simulations according to Baltagi et al. (2011), Petersen (2009) and Gow et al. (2010), to analyze how regression results are affected by the possible nonstationarity of the variables of interest.

Findings

The results of this study suggest that biases in regression estimates can be reduced and valid inferences can be obtained by using robust standard errors clustered by firm, clustered by firm and time or Fama–MacBeth t-statistics based on the mean and standard errors of the cross section of coefficients from time-series regressions.

Originality/value

The findings of this study are suited to guide future researchers regarding which estimation methods are the most reliable given the possible nonstationarity of the variables of interest.

Details

The Journal of Risk Finance, vol. 18 no. 3
Type: Research Article
ISSN: 1526-5943

Keywords

Article
Publication date: 11 July 2016

Shuyun Ren and Tsan-Ming Choi

Panel data-based demand forecasting models have been widely adopted in various industrial settings over the past few decades. Despite being a highly versatile and…

Abstract

Purpose

Panel data-based demand forecasting models have been widely adopted in various industrial settings over the past few decades. Despite being a highly versatile and intuitive method, in the literature, there is a lack of comprehensive review examining the strengths, the weaknesses, and the industrial applications of panel data-based demand forecasting models. The purpose of this paper is to fill this gap by reviewing and exploring the features of various main stream panel data-based demand forecasting models. A novel process, in the form of a flowchart, which helps practitioners to select the right panel data models for real world industrial applications, is developed. Future research directions are proposed and discussed.

Design/methodology/approach

It is a review paper. A systematically searched and carefully selected number of panel data-based forecasting models are examined analytically. Their features are also explored and revealed.

Findings

This paper is the first one which reviews the analytical panel data models specifically for demand forecasting applications. A novel model selection process is developed to assist decision makers to select the right panel data models for their specific demand forecasting tasks. The strengths, weaknesses, and industrial applications of different panel data-based demand forecasting models are found. Future research agenda is proposed.

Research limitations/implications

This review covers most commonly used and important panel data-based models for demand forecasting. However, some hybrid models, which combine the panel data-based models with other models, are not covered.

Practical implications

The reviewed panel data-based demand forecasting models are applicable in the real world. The proposed model selection flowchart is implementable in practice and it helps practitioners to select the right panel data-based models for the respective industrial applications.

Originality/value

This paper is the first one which reviews the analytical panel data models specifically for demand forecasting applications. It is original.

Details

Industrial Management & Data Systems, vol. 116 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Book part
Publication date: 15 April 2020

Badi H. Baltagi, Georges Bresson and Jean-Michel Etienne

This chapter proposes semiparametric estimation of the relationship between growth rate of GDP per capita, growth rates of physical and human capital, labor as well as…

Abstract

This chapter proposes semiparametric estimation of the relationship between growth rate of GDP per capita, growth rates of physical and human capital, labor as well as other covariates and common trends for a panel of 23 OECD countries observed over the period 1971–2015. The observed differentiated behaviors by country reveal strong heterogeneity. This is the motivation behind using a mixed fixed- and random coefficients model to estimate this relationship. In particular, this chapter uses a semiparametric specification with random intercepts and slopes coefficients. Motivated by Lee and Wand (2016), the authors estimate a mean field variational Bayes semiparametric model with random coefficients for this panel of countries. Results reveal nonparametric specifications for the common trends. The use of this flexible methodology may enrich the empirical growth literature underlining a large diversity of responses across variables and countries.

Open Access
Article
Publication date: 8 November 2018

Rohit Bansal, Arun Singh, Sushil Kumar and Rajni Gupta

The purpose of this paper is to quantify several measures to examine the determinants of profitability for the listed Indian banks. The authors include both public sector…

3978

Abstract

Purpose

The purpose of this paper is to quantify several measures to examine the determinants of profitability for the listed Indian banks. The authors include both public sector (PSUs) and private sector’s banks in the study. The authors have taken all the banks that are registered on the Bombay stock exchange (BSE) in the sample. This paper also intends to identify the association between the net profit margin (PM) and return on assets (ROA) with the several other independent variables of the Indian banking sector including private banks and public banks over the past six years starting from April 1, 2012 to March 31, 2017. Therefore, a sample of 39 listed banking companies and total 195 balanced observations are selected for the analysis purpose.

Design/methodology/approach

The authors have used profitability as a dependent variable represented by net PM, ROA and several financial ratios as independent variables. Financial statement and income statement of all listed banks were obtained from BSE and particular company’s website. Panel data regression has been analyzed with both the descriptive research techniques, i.e., fixed effects and random effects. The authors also verified both panel techniques with Hausman’s specification test, which is a widely used procedure for selecting a panel effect. The authors applied PP – Fisher χ2, PP – Choi Z-statistics and Hadri to testing whether the data set is free from unit root problem and data set is a stationary series.

Findings

Results imply that interest expended interest earned (IEIE) and credit deposit ratio (CRDR) reduced the profitability of private banks in India. IEIE, CRDR and quick ratio (QR) reduced the profitability of public banks in India, while cash deposit ratio (CDR) and Advances to Loan Funds (ALF) increased the effectiveness of public banks. Under the total banks IEIE, CRDR reduced the profitability, on the other side, CDR, ALF and Total Debt to Owners Fund (TDOF) increased the profitability of total banks in India. Under the dependency of ROA, CRDR and TDOF reduced the return of private banks in India, while CDR, ALF and QR enhanced the profitability of private banks.

Originality/value

No variables found significant under public banks while taking ROA as a dependent variable. Under the overall banking data, CRDR reduced the profitability. On the other side, capital adequacy ratio and ALF increased the profitability of total banks in India. The findings of this study will support policy creators, financial executives and investors in constructing investment decisions.

Details

Asian Journal of Accounting Research, vol. 3 no. 2
Type: Research Article
ISSN: 2443-4175

Keywords

Abstract

Details

Panel Data Econometrics Theoretical Contributions and Empirical Applications
Type: Book
ISBN: 978-1-84950-836-0

Article
Publication date: 22 September 2021

Seyed Reza Zeytoonnejad Mousavian, Seyyed Mehdi Mirdamadi, Seyed Jamal Farajallah Hosseini and Maryam Omidi NajafAbadi

Foreign Direct Investment (FDI) is an important means of boosting the agricultural sectors of developing economies. The first necessary step to formulate effective public…

Abstract

Purpose

Foreign Direct Investment (FDI) is an important means of boosting the agricultural sectors of developing economies. The first necessary step to formulate effective public policies to encourage agricultural FDI inflow to a host country is to develop a comprehensive understanding of the main determinants of FDI inflow to the agricultural sector, which is the main objective of the present study.

Design/methodology/approach

In view of this, we take a comprehensive approach to exploring the macroeconomic and institutional determinants of FDI inflow to the agricultural sector by examining a large panel data set on agricultural FDI inflows of 37 countries, investigating both groups of developed and developing countries, incorporating a large list of potentially relevant macroeconomic and institutional variables, and applying panel-data econometric models and estimation structures, including pooled, fixed-effects and random-effects regression models.

Findings

The general pattern of our findings implies that the degree of openness of an economy has a negative effect on FDI inflows to agricultural sectors, suggesting that the higher the degree of openness in an economy, the lower the level of agricultural protection against foreign trade and imports, and thus the less incentive for FDI to inflow to the agricultural sector of the economy. Additionally, our results show that economic growth (as an indicator of the rate of market-size growth in the host economy) and per-capita real GDP (as an indicator of the standard of living in the host country) are both positively related to FDI inflows to agricultural sectors. Our other results suggest that agricultural FDI tends to flow more to developing countries in general and more to those with higher standards of living and income levels in particular.

Originality/value

FDI inflow has not received much attention with respect to the identification of its main determinants in the context of agricultural sectors. Additionally, there are very few panel-data studies on the determinants of FDI, and even more surprisingly, there are no such studies on the main determinants of FDI inflow to the agricultural sector. We have taken a comprehensive approach by studying FDI inflow variations across countries as well as over time.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 18 March 2022

Ali İhsan Akgun, Serap Pelin Türkoğlu and Süheyla Erikli

This paper examines the determinants of happiness index ratings in European countries over 8 time points using unique data from the Eurostat, World Bank and World…

Abstract

Purpose

This paper examines the determinants of happiness index ratings in European countries over 8 time points using unique data from the Eurostat, World Bank and World Happiness Reports.

Design/methodology/approach

To examine the determinants of happiness index ratings for EU-27 countries over the period 2012–2019, panel ordinary least square and quantile regression model are used to data obtained from all sample.

Findings

Evidence from European data on happiness index generate some important key outcomes; economic outcomes levels with both current taxes and inflation rate have a positively relationship on happiness index ratings (HIR), while total employment rate has a significant negativity on HIR. Additionally, in a quantile panel regression of 27 countries, the impact of financial inclusion on happiness index looks to change with a country's level of income. On the macroeconomic level, gross domestic product (GDP) improves the happiness index for the individual under certain conditions. Thus, GDP on 0.25th quantile levels positively and significantly impacts the HIR for leader countries.

Social implications

Empirical evidence suggests that macro-economic variables and the labor market proxies of the countries play a key role in determining HIR as well.

Originality/value

The study extends the literature on developed countries and suggestions a particular perspective on the relationship between economic outcomes and happiness index. This study offers two main originalities: it simultaneously examines the “happiness-macroeconomic level” and “happiness-employment status dimension”, and it uses a quantile regression approach, including financial inclusion variation.

Details

International Journal of Sociology and Social Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-333X

Keywords

1 – 10 of over 20000