Search results
1 – 3 of 3Palaniswamy Venugopal and Natarajan Murugan
The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for…
Abstract
Purpose
The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for aerospace, energy, and military purposes, as well as in other industries – for example, they have been used in electronic packaging, aerospace structures, aircraft and internal combustion engine components, and a variety of recreational products. In all these applications, welding plays a vital role. Little attention has been paid to SiC reinforced aluminium matrix composites joined by gas tungsten arc (GTA) welding. The purpose of this paper is to outline the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs.
Design/methodology/approach
This paper focuses upon production and welding of metal matrix composites. The welded composites have been treated at elevated and cryogenic temperatures for experimental studies. Pitting corrosion analysis of welded plates was carried out as per Box Benkehn Design.
Findings
From the results, it should be noted that maximum pitting resistance was observed with MMCs containing 10% SiC treated at cryogenic temperature. Corrosion resistance of welded composites treated at elevated temperature was found to be higher than that of as‐welded and at cryogenic temperature treated composites. The pitting potential increases with increase in % SiC to certain level and decreases with further increase in % SiC. Corrosion potential of composites treated at elevated temperature is high compared to other composites. Maximum pitting resistance is observed when the welding current was kept at 175 amps for 10% addition of SiC in LM25 matrix treated at cryogenic temperature.
Originality/value
The paper outlines the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. The results obtained may be helpful for the automobile and aerospace industries.
Details
Keywords
The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital…
Abstract
Purpose
The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.
Design/methodology/approach
The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.
Findings
Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.
Originality/value
Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.
Details