Search results

1 – 10 of 326
Article
Publication date: 25 January 2024

Seda Aygül, Serkan Yılmazsönmez, Arzu Soyalp and Ayse Aytac

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts…

Abstract

Purpose

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts have been made to replace some of the TiO2 in paint with new pigments. This study aims to replace part of TiO2 pigment with various percentages of BaSO4, CaCO3 and kaolin in styrene butyl acrylate-based paint formulations, without changing the properties of paints using only titanium dioxide.

Design/methodology/approach

To determine the optimum use rate of new pigment mixing, opacity, gloss, scrub resistance and weather resistance properties have been investigated in the water-based paint formulation. The morphological properties of these samples were examined by scanning electron microscopy analysis.

Findings

In the total color change (ΔE) measurements, it was observed that the sample coded 85Ti/15Ba produced extremely similar results to the situation when TiO2 was used alone. It was seen that the best results were obtained when 85Ti/15Ba was used instead of TiO2.

Originality/value

Comparison research on the impact of replacing TiO2 with BaSO4, CaCO3 and kaolin on the performance characteristics of water-based styrene butyl acrylate-based paint formulations has not been done in the literature, according to the literature search.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 January 2024

Arish Ibrahim and Gulshan Kumar

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Abstract

Purpose

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Design/methodology/approach

This study used a fuzzy decision-making trial and evaluation laboratory approach to identify critical Industry 4.0 technologies that can be harmonized with Lean Six Sigma methodologies for achieving improved processes in manufacturing.

Findings

The research reveals that key technologies such as modeling and simulation, artificial intelligence (AI) and machine learning, big data analytics, automation and industrial robots and smart sensors are paramount for achieving operational excellence when integrated with Lean Six Sigma.

Research limitations/implications

The study is limited to the identification of pivotal Industry 4.0 technologies for Lean Six Sigma integration in manufacturing. Further studies can explore the implementation challenges and the quantifiable benefits of such integrations.

Practical implications

Integrating Industry 4.0 technologies with Lean Six Sigma enhances manufacturing efficiency. This approach leverages AI for predictive analysis, uses smart sensors for energy efficiency and adaptable robots for flexible production. It is vital for competitive advantage, significantly improving decision-making, reducing costs and streamlining operations in the manufacturing sector.

Social implications

The integration of Industry 4.0 technologies with Lean Six Sigma in manufacturing has significant social implications. It promotes job creation in high-tech sectors, necessitating advanced skill development and continuous learning among the workforce. This shift fosters an innovative, knowledge-based economy, potentially reducing the skills gap. Additionally, it enhances workplace safety through automation, reduces hazardous tasks for workers and contributes to environmental sustainability by optimizing resource use and reducing waste in manufacturing processes.

Originality/value

This study offers a novel perspective on synergizing advanced Industry 4.0 technologies with established Lean Six Sigma practices for enhanced process improvement in manufacturing. The findings can guide industries in prioritizing their technological adoptions for continuous improvement.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 May 2023

Xingwei Li, Jingru Li, Jinrong He, Yicheng Huang, Xiang Liu, Jiachi Dai and Qiong Shen

The surging market demand for green construction materials has brought opportunities for construction materials enterprises' greenwashing behavior (GWB). This study aims to…

Abstract

Purpose

The surging market demand for green construction materials has brought opportunities for construction materials enterprises' greenwashing behavior (GWB). This study aims to establish the causal relationship among the influencing factors of GWB and reveal the key influencing factors from the perspective of Chinese construction materials enterprises under multi-agent interactions.

Design/methodology/approach

This study is based on stakeholder theory, resource-based theory and the green development behavior and performance of industrial enterprises (GDBP-IE). First, with the literature analysis, an index framework of the influencing factors of enterprises' GWB was constructed from five dimensions (including 15 factors): environmental regulation, public scrutiny, market environment, corporate resources and corporate green development (GD) performance. Second, the interactive relationship among influencing factors was obtained by a questionnaire survey. Finally, the data are processed and analyzed with the grey-DEMATEL (Decision-making Trial and Evaluation Laboratory) method.

Findings

Among the factors, corporate information transparency has the greatest impact on the other factors, and consumer green preferences are most influenced by others. The most critical and important factor is the corporate social performance factor. In China, corporate social performance, corporate information transparency, corporate size and media supervision are the key factors influencing the GWB of construction materials enterprises.

Originality/value

This study provides a new perspective on the literature related to GWB by considering multi-agent interactions and extends the evidence from the construction materials industry for research on the drivers or influencing factors of enterprises' bad environmental behavior. Furthermore, it adds insights from China for further research on the governance strategies of GWB in other countries.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 March 2024

Aldo Giovanni Caypa-Altare and Maria D. Moreno-Luzon

The purpose of this paper is to analyse the role of quality management on the development of organisational exploration.

Abstract

Purpose

The purpose of this paper is to analyse the role of quality management on the development of organisational exploration.

Design/methodology/approach

Partial Least Square was used on a sample of 350 companies within the Spanish organic agro-food industry.

Findings

The study results provide empirical evidence of the positive and significant impact that quality management has on the development of organisational exploration.

Research limitations/implications

Causal relationships cannot be applied to this study due to cross-sectional data being used rather than longitudinal data.

Practical implications

Quality management must be considered by managers an essential tool to the development of organisational exploration. As a systematic approach, that moves towards to the development of policies, attitudes and behaviours which foster and boots the development of organisational exploration.

Originality/value

Quality management is a widely used management approach, which organisations use to improve the quality of their products, services and their overall performance. Organisational exploration is seen as a fundamental tool to ensure sustainability, profitability and the future survival of organisations; however, there is disagreement throughout previous research. Some authors point out the importance of quality management in developing activities that promote organisational exploration, whereas other authors see quality management as an inhibitor. Given the great controversy in previous research, our study clarifies the role of quality management in the development of organisational exploration.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 March 2024

Tali Hadasa Blank

This study's main goal is to expand the theoretical perspective and discuss the unique influence of age and tenure on R&D teams' incremental innovation outcomes. We answer…

Abstract

Purpose

This study's main goal is to expand the theoretical perspective and discuss the unique influence of age and tenure on R&D teams' incremental innovation outcomes. We answer scholars call for additional research on age-related processes by testing pathways through which older employees can benefit organizational performance. The current study advances the literature by relating to the context-related process of cohesion and investigating its moderating influence on the relationship between team antecedents (i.e. age and tenure) and incremental innovation.

Design/methodology/approach

This research sample consists of 108 R&D teams operating in six mature high-tech organizations located in Israel. The participating entities design and manufacture state-of-the-art innovations in the semiconductors, communications and information technology sectors. The number of teams in each participating entity was 35, 21, 21, 19, 7 and 5, respectively. The sample consisted of 443 R&D employees and 212 team leaders/managers. The total sample comprised 655 participants. Team members filled out questionnaires to assess the independent variables. The dependent-variable questionnaire focusing on the team's incremental innovation accomplishments was completed by two managers for each team.

Findings

We found a negative association between team members' age and incremental innovation. Hypothesis 2, which predicted a positive association between team members' tenure and incremental innovation, was marginally supported. The interaction between team members' age and team members' tenure on incremental innovation was marginally supported. Hypothesis 4, which predicted that the negative association between team members' age and incremental innovation would be mitigated when the level of team cohesion is low, was supported. Hypothesis 5, which assumed that the positive association between team members' tenure and incremental innovation would be stronger when the level of cohesion is high, was supported.

Practical implications

This research's results regarding the negative influence of R&D employees' age on incremental innovation are crucial for managers and team leaders in the high-tech industry. Following the age stereotype, many of them avoid recruiting and assigning older employees to R&D teams dealing in innovation creation and development. They should expand their perspective and consider additional attributes in order to assign the employees that best match the team's mission. The results show that R&D teams produce high and similar levels of incremental innovation when the level of team members' tenure is high, regardless of their age.

Originality/value

This study benefited from a relatively high number of respondents and teams from leading high-tech organizations, a high response rate and a research design that made it possible to establish a linkage between data on the independent variables and data on incremental innovation collected from separate independent sources. The data on the dependent variable—incremental innovation—was based on independent assessments made by two managers for each team. The study's measurements were based on leading studies on innovation.

Details

Cross Cultural & Strategic Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5794

Keywords

Article
Publication date: 22 November 2023

Khishn Kumar Kandiah, Vengadaesvaran Balakrishnan, Amirul Syafiq, Nasrudin Abd Rahim, Adarsh Kumar Pandey, Yee Seng Tan, Sanjay J Dhoble, Ramesh Kasi and Ramesh Subramaniam

There is a strong inducement to develop new inorganic materials to substitute the current industrial pigments, which are known for their poor ultraviolet absorbent and low…

Abstract

Purpose

There is a strong inducement to develop new inorganic materials to substitute the current industrial pigments, which are known for their poor ultraviolet absorbent and low photoluminescence (PL) properties. The purpose of this paper is to invent a better rare-earth-based pigment material as a spectral modifier with good luminescence properties to enhance the spectral response for photovoltaic panel application.

Design/methodology/approach

Different phosphor samples made of nano-calcium carbonate (CaCO3) with varied wt.% of the dopant Dysprosium doped calcium borophosphate (CBP/Dy) as (W0 – 0%, W1 – 3,85%, W2 – 7.41%, W3 –10.71% and W4 –13.79%) were prepared via the solid-state diffusion method at 600 °C for 6 h using a muffle furnace. The structural, morphological and luminescence properties of the CaCO3:CBP/Dy powder samples were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and PL test.

Findings

The XRD, SEM and FTIR results verified the crystalline formation, morphological behaviour and vibration bonds of synthesized CBP/Dy-doped CaCO3 powder samples. XRD pattern revealed that the synthesized powder samples exhibit crystalline structured materials, and SEM results showed irregular shape and porous-like structured morphologies. FTIR spectrum shows prominent bands at 712, 874 and 1,404 cm−1, corresponding to asymmetric stretching vibrations of CO32− groups and out-of-plane bending. PL characterization of CBP/Dy-doped CaCO3 (sample W) shows emission at 427 nm (λmax) under the excitation of 358 nm. The intensity of PL emission spectra drops due to the concentration quenching effect, while the maximum PL intensity is observed in the W3 phosphor powder system.

Research limitations/implications

This phosphor powder is expected to find out the potential application such as a spectral modifier which is applied to match the energy of photons with solar cell bandgap to improve spectral absorption and lead to better efficiency.

Originality/value

The introduction of a nano-CaCO3:CBP/Dy hybrid powder system with good luminescence properties to be used as spectral modifiers for solar cell application has been synthesized in the lab, which is a novel attempt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2023

Nitin Maini, Khushdeep Dharni and Rakesh Rathore

This study investigates the supply chain efficiency of selected companies in the Indian food processing sector. Additionally, it explores the relationship between supply chain…

Abstract

Purpose

This study investigates the supply chain efficiency of selected companies in the Indian food processing sector. Additionally, it explores the relationship between supply chain efficiency and firm performance.

Design/methodology/approach

To determine the supply chain efficiency, the study uses supply chain efficiency measures, such as supply chain length, inefficiency ratio and working capital productivity. Secondary data were collected from the Center for Monitoring Indian Economy (CMIE) Prowess database for the years 2011–2017. Various return measures, such as Return on Net Worth (RONW), Return on Total Assets (ROTA) and Return on Capital Employed (ROCE), were used to measure firm performance. Collected data were analyzed to investigate the relationship between supply chain efficiency and firm performance.

Findings

Findings of the study reveal the prevalence of inefficient supply chains in the context of the selected companies. There is a significant negative correlation between supply chain efficiency and firm performance. RONW has a significant negative correlation with the length of supply chain as well as supply chain inefficiency.

Research limitations/implications

This study expands the limited existing research perspective; the study helps to understand the supply chain efficiency and firm performance.

Originality/value

This is an original piece of work and provides valuable insight into the relationship between supply chain efficiency and firm performance.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 23 October 2023

Rabee Reffat and Julia Adel

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Abstract

Purpose

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Design/methodology/approach

The study methodology involves systematically developing and testing 18 different NVIs in six categories (glazing types, window films, external shading devices, automated internal shades, lighting systems and nanopainting) to identify the most effective individual NVIs. The impact of each individual NVI was examined on an exemplary university educational building in a hot climate zone in Egypt using a computational energy simulation tool, and the results were used to develop 39 combination scenarios of dual, triple and quadruple combinations of NVIs.

Findings

The optimal 10 combination scenarios of NVIs were determined based on achieving the highest percentages of energy reduction. The optimal percentage of energy reduction is 47.1%, and it was obtained from a combination of nanowindow film, nanopainting, LED lighting and horizontal louver external. The study found that appropriate mixture of NVIs is the most key factor in achieving the highest percentages of energy reduction.

Practical implications

These results have important implications for optimizing energy savings in existing buildings. The results can guide architects, owners and policymakers in selecting the most appropriate interventions in existing buildings to achieve the optimal reduction in energy consumption.

Originality/value

The novelty of this research unfolds in two significant ways: first, through the exploration of the potential effects arising from the integration of advanced NVIs into existing building facades. Second, it lies in the systematic development of a series of scenarios that amalgamate these NVIs, thereby pinpointing the most efficient strategies to optimize energy savings, all without necessitating any disruptive alterations to the existing building structure. These combination scenarios encompass the incorporation of both passive and active NVIs. The potential application of these diverse scenarios to a real-life case study is presented to underscore the substantial impact that these advanced NVIs can have on the energy performance of the building.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

1 – 10 of 326