Search results

1 – 10 of 10
Article
Publication date: 30 January 2024

Abdul-Majid Wazwaz

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Abstract

Purpose

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Design/methodology/approach

The newly developed Painlevé integrable equations have been handled by using Hirota’s direct method. The authors obtain multiple soliton solutions and other kinds of solutions for these six models.

Findings

The developed Hamiltonian models exhibit complete integrability in analogy with the original equation.

Research limitations/implications

The present study is to address these two main motivations: the study of the integrability features and solitons and other useful solutions for the developed equations.

Practical implications

The work introduces six Painlevé-integrable equations developed from a Hamiltonian model.

Social implications

The work presents useful algorithms for constructing new integrable equations and for handling these equations.

Originality/value

The paper presents an original work with newly developed integrable equations and shows useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Abdul-Majid Wazwaz, Weaam Alhejaili and Samir El-Tantawy

The purpose of this study is to form a linear structure of components of the modified Korteweg–De Vries (mKdV) hierarchy. The new model includes 3rd order standard mKdV equation…

Abstract

Purpose

The purpose of this study is to form a linear structure of components of the modified Korteweg–De Vries (mKdV) hierarchy. The new model includes 3rd order standard mKdV equation, 5th order and 7th order mKdV equations.

Design/methodology/approach

The authors investigate Painlevé integrability of the constructed linear structure.

Findings

The Painlevé analysis demonstrates that established sum of integrable models retains the integrability of each component.

Research limitations/implications

The research also presents a set of rational schemes of trigonometric and hyperbolic functions to derive breather solutions.

Practical implications

The authors also furnish a variety of solitonic solutions and complex solutions as well.

Social implications

The work formally furnishes algorithms for extending integrable equations that consist of components of a hierarchy.

Originality/value

The paper presents an original work for developing Painlevé integrable model via using components of a hierarchy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Abdul-Majid Wazwaz, Mansoor Alshehri and Samir A. El-Tantawy

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Abstract

Purpose

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Design/methodology/approach

The authors use the Painlevé analysis to study its complete integrability in the Painlevé sense.

Findings

The Painlevé analysis demonstrates the compatibility condition for the model integrability with the addition of new extra terms.

Research limitations/implications

The phase shifts, phase variables and Hirota’s bilinear algorithm are used to furnish multiple soliton solutions.

Practical implications

The authors also furnish a variety of numerous periodic solutions, kink solutions and singular solutions.

Social implications

The work formally furnishes algorithms for investigating several physical systems, including plasma physics, optical communications and oceans and seas, among others.

Originality/value

This paper presents an original work using a newly developed Painlevé integrable model, as well as novel and insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Abdul-Majid Wazwaz, Haifa A. Alyousef and Samir El-Tantawy

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Abstract

Purpose

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Design/methodology/approach

This study formally uses Painlevé test to confirm the integrability of the new system.

Findings

The Painlevé analysis shows that the compatibility condition for integrability does not die away by adding three new linear terms with distinct coefficients.

Research limitations/implications

This study uses the Hirota's bilinear method to explore multiple soliton solutions where phase shifts and phase variable are explored.

Practical implications

This study also furnishes a class of lump solutions (LSs), which are rationally localized in all directions in space, using distinct values of the parameters via using the positive quadratic function method.

Social implications

This study also shows the power of the simplified Hirota’s method in handling integrable equations.

Originality/value

This paper introduces an original work with newly developed Painlevé integrable model and shows new useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 December 2022

Abdul-Majid Wazwaz, Lamiaa El-Sherif and Samir El-Tantawy

This paper aims to propose a new (3+1)-dimensional integrable Hirota bilinear equation characterized by five linear partial derivatives and three nonlinear partial derivatives.

Abstract

Purpose

This paper aims to propose a new (3+1)-dimensional integrable Hirota bilinear equation characterized by five linear partial derivatives and three nonlinear partial derivatives.

Design/methodology/approach

The authors formally use the simplified Hirota's method and lump schemes for determining multiple soliton solutions and lump solutions, which are rationally localized in all directions in space.

Findings

The Painlevé analysis shows that the compatibility condition for integrability does not die away at the highest resonance level, but integrability characteristics is justified through the Lax sense.

Research limitations/implications

Multiple-soliton solutions are explored using the Hirota's bilinear method. The authors also furnish a class of lump solutions using distinct values of the parameters via the positive quadratic function method.

Practical implications

The authors also retrieve a bunch of other solutions of distinct structures such as solitonic, periodic solutions and ratio of trigonometric functions solutions.

Social implications

This work formally furnishes algorithms for extending integrable equations and for the determination of lump solutions.

Originality/value

To the best of the authors’ knowledge, this paper introduces an original work with newly developed Lax-integrable equation and shows new useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2023

Suheil Khuri

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

37

Abstract

Purpose

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

Design/methodology/approach

The approach is based on a recently constructed ansätze strategy. This method is an alternative to the Painleve test analysis, producing results similarly, but in a more practical, straightforward manner.

Findings

The approach proved the existence of both singular and optical soliton solutions. The method and its application show how much better and simpler this new strategy is than current ones. The most significant benefit is that it may be used to solve a wide range of partial differential equations that are encountered in practical applications.

Originality/value

The approach has been developed recently, and this is the first time that this method is applied successfully to extract soliton solutions to the Date–Jimbo–Kashiwara–Miwa equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 9 August 2023

Kang-Jia Wang

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Abstract

Purpose

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Design/methodology/approach

By means of the Cole–Hopf transform, the bilinear form of the studied equation is extracted. Then the ansatz function method combined with the symbolic computation is implemented to construct the breather, multiwave and the interaction wave solutions. In addition, the subequation method tis also used to search for the diverse travelling wave solutions.

Findings

The breather, multiwave and the interaction wave solutions and other wave solutions like the singular periodic wave structure and dark wave structure are obtained. To the author’s knowledge, the solutions obtained are all new and have never been reported before.

Originality/value

The solutions obtained in this work have never appeared in other literature and can be regarded as an extension of the solutions for the new (3 + 1)-dimensional integrable fourth-order nonlinear equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves…

41

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 10