Search results

1 – 10 of over 5000
Article
Publication date: 17 May 2023

Ishita Seth, Kalpna Guleria and Surya Narayan Panda

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in…

28

Abstract

Purpose

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in significant standards and guidelines that have engaged various researchers and companies. In IoV, routing protocols play a significant role in enhancing communication safety for the transportation system. The high mobility of nodes in IoV and inconsistent network coverage in different areas make routing challenging. This paper aims to provide a lane-based advanced forwarding protocol for internet of vehicles (LAFP-IoV) for efficient data distribution in IoV. The proposed protocol’s main feature is that it can identify the destination zone by using position coordinates and broadcasting the packets toward the direction of destination. The novel suppression technique is used in the broadcast method to reduce the network routing overhead.

Design/methodology/approach

The proposed protocol considers the interferences between different road segments, and a novel lane-based forwarding model is presented. The greedy forwarding notion, the broadcasting mechanism, and the suppression approach are used in this protocol to reduce the overhead generated by standard beacon forwarding procedures. The SUMO tool and NS-2 simulator are used for the vehicle's movement pattern and to simulate LAFP-IoV.

Findings

The simulation results show that the proposed LAFP-IoV protocol performs better than its peer protocols. It uses a greedy method for forwarding data packets and a carry-and-forward strategy to recover from the local maximum stage. This protocol's low latency and good PDR make it ideal for congested networks.

Originality/value

The proposed paper provides a unique lane-based forwarding for IoV. The proposed work achieves a higher delivery ratio than its peer protocols. The proposed protocol considers the lanes while forwarding the data packets applicable to the highly dense scenarios.

Article
Publication date: 31 December 2006

Tassos Dimitriou and Ioannis Krontiris

Nodes in sensor networks do not have enough topology information to make efficient routing decisions. To relay messages through intermediate sensors, geographic routing has been…

Abstract

Nodes in sensor networks do not have enough topology information to make efficient routing decisions. To relay messages through intermediate sensors, geographic routing has been proposed as such a solution. Its greedy nature, however, makes routing inefficient especially in the presence of topology voids or holes. In this paper we present GRAViTy (Geographic Routing Around Voids In any TopologY of sensor networks), a simple greedy forwarding algorithm that combines compass routing along with a mechanism that allows packets to explore the area around voids and bypass them without significant communication overhead. Using extended simulation results we show that our mechanism outperforms the right‐hand rule for bypassing voids and that the resulting paths found well approximate the corresponding shortest paths. GRAViTy uses a cross‐layered approach to improve routing paths for subsequent packets based on experience gained by former routing decisions. Furthermore, our protocol responds to topology changes, i.e. failure of nodes, and efficiently adjusts routing paths towards the destination.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 31 December 2006

Bin Xie, Anup Kumar, Dave Cavalcanti and Dharma P. Agrawal

This paper proposes a new Heterogeneous Multi‐hop Cellular IP (MCIP) network that integrates multi‐hop communication with Cellular IP. MCIP increases the coverage of the wireless…

Abstract

This paper proposes a new Heterogeneous Multi‐hop Cellular IP (MCIP) network that integrates multi‐hop communication with Cellular IP. MCIP increases the coverage of the wireless network and improves the network robustness against adverse propagation phenomena by supporting communication in dead zones and areas with poor radio coverage. MCIP includes three components: location management, connection management and route reconfiguration. Location management is responsible for maintaining the location information for Mobile Stations (MSs) in a local domain. Connection management establishes an initial path for data transmission and a route reconfiguration mechanism is proposed to take advantage of various multi‐hop connection alternatives available based on terminal interfaces, network accessibility and topology. Our simulation results show that MCIP performs well in networks of various sizes including scalability, throughput, and packet delay.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 November 2008

Wolfgang John and Tomas Olovsson

This study seeks to investigate modern internet back‐bone traffic in order to study occurrences of malicious activities and potential security problems within internet packet

Abstract

Purpose

This study seeks to investigate modern internet back‐bone traffic in order to study occurrences of malicious activities and potential security problems within internet packet headers.

Design/methodology/approach

Contemporary and highly aggregated back‐bone data have been analyzed regarding consistency of network and transport layer headers (i.e. IP, TCP, UDP and ICMP). Possible security implications of each anomaly observed are discussed.

Findings

A systematic listing of packet header anomalies, together with their frequencies as seen “in the wild”, is provided. Inconsistencies in protocol headers have been found within almost every aspect analyzed, including incorrect or incomplete series of IP fragments, IP address anomalies and other kinds of header fields not following internet standards. Internet traffic was shown to contain many erroneous packets; some are the result of software and hardware errors, others the result of intentional and malicious activities.

Practical implications

The study not only presents occurrences of header anomalies as observed in today's internet traffic, but also provides detailed discussions about possible causes for the inconsistencies and their security implications for networked devices.

Originality/value

The results are relevant for researchers as well as practitioners, and form a valuable input for intrusion detection systems, firewalls and the design of all kinds of networked applications exposed to network attacks.

Details

Campus-Wide Information Systems, vol. 25 no. 5
Type: Research Article
ISSN: 1065-0741

Keywords

Article
Publication date: 31 December 2006

Maulin Patel, S. Venkateson and R. Chandrasekaran

A critical issue in the design of routing protocols for wireless sensor networks is the efficient utilization of resources such as scarce bandwidth and limited energy supply. Many…

Abstract

A critical issue in the design of routing protocols for wireless sensor networks is the efficient utilization of resources such as scarce bandwidth and limited energy supply. Many routing schemes proposed in the literature try to minimize the energy consumed in routing or maximize the lifetime of the sensor network without taking into consideration limited capacities of nodes and wireless links. This can lead to congestion, increased delay, packet losses and ultimately to retransmission of packets, which will waste considerable amount of energy. This paper presents a Minimum‐cost Capacity‐constrained Routing (MCCR) protocol which minimize the total energy consumed in routing while guaranteeing that the total load on each sensor node and on each wireless link does not exceed its capacity. The protocol is derived from polynomial‐time minimum‐cost flow algorithms. Therefore protocol is simple and scalable. The paper improves the routing protocol in (1) to incorporate integrality, node capacity and link capacity constraints. This improved protocol is called Maximum Lifetime Capacity‐constrained Routing (MLCR). The objective of MLCR protocol is to maximize the time until the first battery drains its energy subject to the node capacity and link capacity constraints. A strongly polynomial time algorithm is proposed for a special case of MLCR problem when the energy consumed in transmission by a sensor node is constant. Simulations are performed to analyzed the performance of the proposed protocols.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 2 January 2020

Baban A. Mahmood and Dakshnamoorthy Manivanann

The purpose of this paper is to design an efficient on-demand routing protocol for mobile ad hoc networks (MANETs) which combines greedy forwarding and backtracking.

Abstract

Purpose

The purpose of this paper is to design an efficient on-demand routing protocol for mobile ad hoc networks (MANETs) which combines greedy forwarding and backtracking.

Design/methodology/approach

It uses a hybrid approach. It uses greedy approach to determine a route from source to the destination. If the greedy approach fails, then it uses a backtracking approach. Combining greedy and backtracking approaches results in a more efficient protocol.

Findings

A new routing algorithm for MANETs which performs better than some of the existing algorithms.

Research limitations/implications

A major limitation of this work is that the authors did not implement the protocol on a test bed and evaluated the performance. They neither had the infrastructure nor the resources to actually implement the protocol. Instead, like most of the researchers, they evaluated the performance of their protocol based on extensive simulation. The mobility model, the area of deployment and the density of nodes chosen to simulate the protocol are consistent with what many of the other researchers have done. Intuitively, the authors’ protocol, as the performance evaluation indicates, is likely to perform well in small networks.

Practical implications

The authors did not implement the protocol on a test bed to evaluate the performance of the protocol. The authors used simulation to study the performance of their protocol. Their simulation model is similar to many of the research works published in the literature.

Originality/value

To the authors’ knowledge, no other paper has combined the greedy and backtracking approach to design a routing protocols for MANETs.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 May 2020

Nabeena Ameen, Najumnissa Jamal and Arun Raj

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but…

Abstract

Purpose

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but because of sensor's resource limitations and other prerequisites, optimal dual route discovery becomes an issue of concern. WSN along with central sink node is capable of handling wireless transmission, thus optimizing the network's lifetime by selecting the dual path. The major problem confronted in the application of security mechanisms in WSNs is resolving the issues amid reducing consumption of resources and increases security.

Design/methodology/approach

According to the proposed system, two metrics, namely, path length and packets delivery ratio are incorporated for identifying dual routes amid the source and destination. Thereafter by making use of the distance metric, the optimal dual route is chosen and data transmission is carried out amid the nodes. With the usage of the recommended routing protocol high packet delivery ratio is achieved with reduced routing overhead and low average end to end delay. It is clearly portrayed in the simulation output that the proposed on demand dual path routing protocol surpasses the prevailing routing protocol. Moreover, security is achieved make use of in accord the data compression reduces the size of the data. With the help of dual path, mathematical model of Finite Automata Theory is derived to transmit data from source to destination. Finite Automata Theory comprises Deterministic Finite Automata (DFA) that is being utilized for Dual Path Selection. In addition, data transition functions are defined for each input stage. In this proposed work, another mathematical model is 10; introduced to efficiently choose an alternate path between a receiver and transmitter for data transfer with qualified node as relay node using RR Algorithm. It also includes Dynamic Mathematical Model for Node Localization to improve the precision in location estimation using Node Localization Algorithm. As a result a simulator is built and various scenarios are elaborated for comparing the performance of the recommended dual path routing protocol with respect to the prevailing ones.

Findings

Reliability and fault-tolerance: The actual motive in utilizing the approach of multipath routing in sensor network was to offer path resilience in case of a node or link failures thus ascertaining reliable transmission of data. Usually in a fault tolerant domain, when the sensor node is unable to forward the data packets to the sink, alternative paths can be utilized for recovering its data packets during the failure of any link/node. Load balancing: Load balancing involves equalizing energy consumption of all the existing nodes, thereby degrading them together. Load balancing via clustering improves network scalability. The network's lifetime as well as reliability can be extended if varied energy level's nodes exist in sensor node. Quality of service (QoS): Improvement backing of quality of service with respect to the data delivery ratio, network throughput and end-to-end latency stands very significant in building multipath routing protocols for various network types. Reduced delay: There is a reduced delay in multipath routing since the backup routes are determined at the time of route discovery. Bandwidth aggregation: By dividing the data toward the same destination into multiple streams (by routing all to a separate path) can aggregate the effective bandwidth. The benefit being that, in case a node possesses many links with low bandwidth, it can acquire a bandwidth which is more compared to the individual link.

Research limitations/implications

Few more new algorithms can be used to compare the QoS parameters.

Practical implications

Proposed mechanism with feedback ascertains improvised delivery ratio compared to the single path protocol since in case of link failure, the protocol has alternative route. In case there are 50 nodes in the network, the detection mechanism yields packet delivery of 95% and in case there are 100 nodes, the packet delivery is lowered to 89%. It is observed that the packet rate in the network is more for small node range. When the node count is 200, the packet ratio is low, which is lowered to 85%. With a node count of 400, the curve depicts the value of 87%. Hence, even with a decrease in value, it is superior than the existing protocols. The average end-to-end delay represents the transmission delay of the data packets that have been successfully delivered as depicted in Figure 6 and Table 3. The recommended system presents the queue as well as the propagation delay from the source to destination. The figure depicts that when compared to the single path protocol, the end-to-end delay can be reduced via route switching. End-to-end delay signifies the time acquired for the delay in the receival of the the retransmitted packet by each node. The comparison reveals that the delay was lower compared to the existing ones in the WSN. Proposed protocol aids in reducing consumption of energy in transmitter, receiver and various sensors. Comparative analysis of energy consumptions of the sensor in regard to the recommended system must exhibit reduced energy than the prevailing systems.

Originality/value

On demand dual path routing protocol. Hence it is verified that the on demand routing protocol comprises DFA algorithms determines dual path. Here mathematical model for routing between two nodes with relay node is derived using RR algorithm to determine alternate path and thus reduce energy consumption. Another dynamic mathematical model for node localization is derived using localization algorithm. For transmitting data with a secure and promising QoS in the WSNs, the routing optimization technique has been introduced. The simulation software environment follows the DFA. The simulation yields in improvised performance with respect to packet delivery ratio, throughput, average end-to-end delay and routing overhead. So, it is proved that the DFA possesses the capability of optimizing the routing algorithms which facilitates the multimedia applications over WSNs.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 February 2014

Ing-Chau Chang, Ciou-Song Lu and Sheng-Chih Wang

In the past, by adopting the handover prediction concept of the fast mobile IPv6, the authors have proposed a cross-layer architecture, which was called the proactive fast HCoP-B…

Abstract

Purpose

In the past, by adopting the handover prediction concept of the fast mobile IPv6, the authors have proposed a cross-layer architecture, which was called the proactive fast HCoP-B (FHCoP-B), to trigger layer 3 HCoP-B route optimization flow by 802.11 and 802.16 link events before the actual layer 2 handover of a mobile subnet in the nested mobile network (NEMO) occurs. In this way, proactive FHCoP-B has shortened its handover latency and packet loss. However, there are two scenarios where proactive FHCoP-B cannot normally complete its operations due to fast movements of the NEMO during handover. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors will propose efficient reactive FHCoP-B flows for these two scenarios to support fast and seamless handovers. The authors will further extend the analytical model proposed for mobile IPv6 to investigate four performance metrics of proactive and reactive FHCoP-B, HCoP-B and two well-known NEMO schemes with the radio link protocol (RLP), which can detect packet losses and performs retransmissions over the error-prone wireless link.

Findings

Through intensive simulations, the authors conclude that FHCoP-B outperforms HCoP-B and the other two well-known NEMO schemes by achieving the shortest handover latencies, the smallest number of packet losses and the fewest playback interruption time during handover only with few extra buffer spaces, even over error-prone wireless links of the nested NEMO.

Originality/value

This paper has three major contributions, which are rare in the NEMO literature. First, the proactive FHCoP-B has been enhanced as the reactive one to handle two fast handover scenarios with RLP for the nested NEMO. Second, the reactive FHCoP-B supports seamless reactive handover for the nested NEMO over error-prone wireless links. Third, mathematical performance analyses for two scenarios of reactive FHCoP-B with RLP over error-prone wireless links have been conducted.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 September 2019

S. Velliangiri

The service denial threats are regularly regarded as tools for effortlessly triggering online-based services offline. Moreover, the present occurrences reveal that these threats…

Abstract

Purpose

The service denial threats are regularly regarded as tools for effortlessly triggering online-based services offline. Moreover, the present occurrences reveal that these threats are being constantly employed for masking other vulnerable threats like disseminating malware, information losses, wire scams and mining bitcoins (Sujithra et al., 2018; Boujnouni and Jedra, 2018). In some cases, service denials have been employed to cyberheist financial firms which sums around $100,000. Documentation from Neustar accounts that is about 70 percent of the financial sector are aware of the threat, and therefore, incidents result in few losses, more than 35 percent of service denial attempts are identified as malware soon after the threat is sent out (Divyavani and Dileep Kumar Reddy, 2018). Intensive packet analysis (IPA) explores the packet headers from Layers 2 to 4 along with the application information layer from Layers 5 to 7 for locating and evading vulnerable network-related threats. The networked systems could be simply contained by low potent service denial operations in case the supplies of the systems are minimized by the safety modules. The paper aims to discuss these issues.

Design/methodology/approach

The initial feature will be resolved using the IPDME by locating the standard precise header delimiters such as carriage return line feed equally locating the header names. For the designed IPDME, the time difficulties in locating the initial position of the header field within a packet with static time expenses of four cycles. For buffering packets, the framework functions at the speed of cables. Soon after locating the header position, the value of the field is mined linearly from the position. Mining all the field values consequentially resolves the forthcoming restrictions which could be increased by estimating various information bytes per cycle and omitting non-required information packets. In this way, the exploration space is minimized from the packet length to the length of the header. Because of the minimized mining time, the buffered packets could be operated at an increasing time.

Findings

Based on the assessments of IPDME against broadly employed SIP application layer function tools it discloses hardware offloading of IPDME it could minimize the loads on the essential system supplies of about 25 percent. The IPDME reveals that the acceleration of 22X– 75X as evaluated against PJSIP parser and SNORT SIP pre-processor. One IPDME portrays an acceleration of 4X–6X during 12 occurrences of SNORT parsers executing on 12 processors. The IPDME accomplishes 3X superior to 200 parallel occurrences of GPU speeded up processors. Additionally, the IPDME has very minimal latencies with 12X–1,010X minimal than GPUs. IPDME accomplishes minimal energy trails of nearly 0.75 W using two engines and for 15 engines it is 3.6 W, which is 22.5X–100X less as evaluated to the graphic-based GPU speeding up.

Originality/value

IPDME assures that the system pools are not fatigued on Layer 7 mining by transmitting straightforwardly based on network intrusions without branching into the operating systems. IPDME averts the latencies because of the memory accesses by sidestepping the operating system which essentially permits the scheme to function at wired speed. Based on the safety perception, IPDME ultimately enhances the performance of the safety systems employing them. The increased bandwidth of the IPDME assures that the IPA’s could function at their utmost bandwidth. The service time for the threat independent traffic is enhanced because of minimization over the comprehensive latencies over the path among the network intrusions and the related applications.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 31 December 2007

Eric Hsiao‐Kuang Wu and Yu‐Chen Cheng

Emerging real‐time multimedia services over IP have penetrated into the daily lives of normal people with the advent of advanced broadband communications and innovated…

Abstract

Purpose

Emerging real‐time multimedia services over IP have penetrated into the daily lives of normal people with the advent of advanced broadband communications and innovated interconnection technologies. To protect shared Internet from unfairness and further congestion collapse, rate control plays a crucial role for many multimedia services such as streaming applications. Streaming applications such as video on demand (VoD) or voice over IP (VoIP) services face some critical problems such as insufficient bandwidth and improper performance of transmission protocols. Besides, the new generation networks are anticipated to integrate all heterogeneous wired and wireless networks and offer seamless customized multimedia services anywhere, anytime. However, wireless networks usually with low and variable bandwidth, and non‐congestion related loss do bring the challenge to the existing transport protocol, such as TCP, TFRC etc.

Design/methodology/approach

The paper uses simulations and compares other methods. The purpose of this paper is to address these issues. The paper, proposes a rate control scheme named Jitter‐based Rate Control (JRC) to fit wired‐wireless hybrid network which has better performance than the current rate control scheme.

Findings

Extensive simulations and comparisons with other methods verify the effectiveness of our method for accurate and smooth estimation, no matter whether the wireless links are located.

Originality/value

The paper introduces the JRC.

Details

International Journal of Pervasive Computing and Communications, vol. 3 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 5000