Search results

1 – 10 of 340
Article
Publication date: 8 May 2018

Yun Tae Kim, Ba-Phu Nguyen and Dae-Ho Yun

It is well-known that consolidation rate of prefabricated vertical drain (PVD)-installed ground is closely related to the discharge capacity of PVD, which decreases with an…

Abstract

Purpose

It is well-known that consolidation rate of prefabricated vertical drain (PVD)-installed ground is closely related to the discharge capacity of PVD, which decreases with an increase in effective stress. This paper aims to present consolidation behaviors of PVD-improved ground considering a varied discharge capacity of PVD.

Design/methodology/approach

A simple equivalent vertical hydraulic conductivity (k′ve method) was proposed in plane strain numerical analysis, in which the effect of decreased discharge capacity with depth was considered. Numerical analysis was applied to analyze field behaviors of test embankment of soft mucky deposit.

Findings

Finite element method results indicated that consolidation behaviors of PVD-improved soil with a nonlinear distribution of discharge capacity with depth were in a good agreement with the observed field behaviors, compared with those with a constant discharge capacity and a linear distribution of discharge capacity. At a given time and depth, the consolidation rate in the case of discharge capacity with a nonlinear distribution is lower than that of a linear or constant distribution.

Practical implications

A geotechnical engineer could use the proposed method to predict consolidation behaviors of drainage-installed ground.

Originality/value

Consolidation behaviors of PVD-installed ground could be reasonably predicted by using the proposed method with considering effect of discharge capacity reduction.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2020

Ba-Phu Nguyen, Ananta Man Singh Pradhan, Tan Hung Nguyen, Nhat-Phi Doan, Van-Quang Nguyen and Thanh-Canh Huynh

The consolidation behavior of prefabricated vertical drain (PVD)-installed soft deposits mainly depends on the PVD performance. The purpose of this study is to propose a numerical…

Abstract

Purpose

The consolidation behavior of prefabricated vertical drain (PVD)-installed soft deposits mainly depends on the PVD performance. The purpose of this study is to propose a numerical solution for the consolidation of PVD-installed soft soil using the large-strain theory, in which the reduction of discharge capacity of PVD according to depth and time is simultaneously considered.

Design/methodology/approach

The proposed solution also takes into account the general constitute relationship of soft soil. Subsequently, the proposed solution is applied to analyze and compare with the monitoring data of two cases, one is the experimental test and another is the test embankment in Saga airport.

Findings

The results show that the reduction of PVD discharge capacity according to depth and time increased the duration required to achieve a certain degree of consolidation. The consolidation rate is more sensitive to the reduction of PVD discharge capacity according to time than that according to the depth. The effects of the reduction of PVD discharge capacity according to depth are more evident when PVD discharge capacity decreases. The predicted results using the proposed numerical solution were validated well with the monitoring data for both cases in verification.

Research limitations/implications

In this study, the variation of PVD discharge capacity is only considered in one-dimensional consolidation. However, it is challenging to implement a general expression for discharge capacity variation according to time in the two-dimensional numerical solution (two-dimensional plane strain model). This is the motivation for further study.

Practical implications

A geotechnical engineer could use the proposed numerical solution to predict the consolidation behavior of the drainage-improved soft deposit considering the PVD discharge capacity variation.

Originality/value

The large-strain consolidation of PVD-installed soft deposits could be predicted well by using the proposed numerical solution considering the PVD discharge capacity variations according to depth and time.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 July 2011

Wan Hasrulnizzam Wan Mahmood, Nurulain Mat Tahar, Mohd Nizam Ab Rahman, Baba and Deros

This paper aims to review the methods used by an automotive manufacturer in enhancing the supply chain management (SCM) system through a set up termed product and vendor…

1335

Abstract

Purpose

This paper aims to review the methods used by an automotive manufacturer in enhancing the supply chain management (SCM) system through a set up termed product and vendor development (PVD) programme. PVD was developed to eliminate problems faced due to late delivery and poor quality of supplies and availability of supplies at the lowest possible costs.

Design/methodology/approach

The paper explores the step‐by‐step methodologies that have been employed by the PVD.

Findings

Results overtime show that the PVD has improved the SCM system especially in the areas of quality and delivery services, other services and cutting costs that manufacturers had to face due to problems that arose in the shortcomings of the supply services.

Research limitations/implications

The PVD has managed to promote the localization programme and has also been able to establish qualified vendors through the structured vendor performance evaluation.

Practical implications

Findings also establish that the PVD team is the key to success for development of the PVD programme.

Originality/value

The paper presents an original discussion about viewing PVD programme from a successful automotive manufacturer. The structured PVD programme helps the team better understand the product development process involving supplier selection and supplier performance measure.

Details

Journal of Modelling in Management, vol. 6 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 24 January 2019

Ba-Phu Nguyen and Yun-Tae Kim

It is well known that the prefabricated vertical drain (PVD) installation process generates a significant soil disturbance around PVD. This disturbed zone significantly affects…

Abstract

Purpose

It is well known that the prefabricated vertical drain (PVD) installation process generates a significant soil disturbance around PVD. This disturbed zone significantly affects the rate of settlement and excess pore pressure dissipation. However, the characteristics of these zones were still uncertain and difficult to quantify; there remains large discrepancy among researchers. This study aims to develop a simple analytical solution for radial consolidation analysis of PVD-installed deposit considering mandrel-induced disturbance.

Design/methodology/approach

The proposed solution takes into account the nonlinear distributions of both horizontal hydraulic conductivity and compressibility toward the drain. The proposed solution was applied to analyze field behavior of test embankment in New South Wales, Australia.

Findings

Both effects significantly increased the time required to achieve a certain degree of consolidation. The effect of hydraulic conductivity on the consolidation rate was more significant than the effect of compressibility variation. And, the increased compressibility in the soil-disturbed zone due to mandrel installation significantly increased vertical strain of the PVD-improved soil deposit. The predicted results using the proposed analytical solution were in good agreement with the field measurements.

Practical implications

A geotechnical engineer could use the proposed analytical solution to predict consolidation behavior of drainage-installed ground.

Originality/value

Consolidation behavior of PVD-installed ground could be reasonably predicted by using the proposed solution with considering variations of both hydraulic conductivity and compressibility due to PVD installation.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2017

Raja Izamshah Raja Abdullah, Bahrin Ikram Redzuwan, Mohd Sanusi Abdul Aziz and Mohd Shahir Kasim

The purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the…

Abstract

Purpose

The purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V).

Design/methodology/approach

The design of the experiment was constructed using the response surface methodology (RSM) with the Box–Behnken method. Two types of round-shaped tungsten carbide inserts were used in this experiment, namely, PVD TiAlN/AlCrN insert tool and CVD TiCN/Al2O3 insert tool. The titanium alloy (Ti-6Al-4V) material was used throughout this experiment. The tool wear and microstructure analysis were measured using a tool maker microscope, an optical microscope and a scanning electron machine.

Findings

The PVD TiAlN/AlCrN insert tool produces the lowest tool wear that significantly prolongs the cutting tool life compared to the CVD TiCN/Al2O3 insert tool. In addition, depth of cut was the main factor affecting the tool life, followed by cutting speed and feed rate.

Originality/value

This study was conducted to compare machining performance between CVD- and PVD-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V). In addition, the information presented in this paper helps reduce the manufacturing cost and setup time for machining titanium alloy. Finally, tool wear comparison between PVD- and CVD-coated titanium alloys was also presented for future improvement for tool manufacturing application.

Details

Industrial Lubrication and Tribology, vol. 69 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 February 2011

Raquel Bayón, Cristina Zubizarreta, Roman Nevshupa, Juan Carlos Rodriguez, Xana Fernández, Unai Ruiz de Gopegui and Amaya Igartua

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on nitrided F1272…

Abstract

Purpose

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on nitrided F1272 steel for gear applications.

Design/methodology/approach

Tribological characterization has been completed by several tribological tests performed under ball‐on‐disc configuration, extreme pressure tests to determine the maximum load before the films failure and rolling‐sliding tests under line‐contact conditions (35‐40 per cent of sliding). The response of the different coatings to sodium chloride aggressive environment has been simulated by accelerated tribocorrosion tests, combining simultaneously chemical and mechanical factors. The synergistic effect of wear on corrosion behaviour and vice versa, has been studied in order to compare the protective properties of the different PVD coatings developed.

Findings

Cr/CrN PVD coating improves wear in almost a 90 per cent compared to the nitrided substrate, presenting a similar behaviour to this one under extreme pressure conditions. CrN/ZrCN coating also improved substrate wear and especially good behaviour for this coating was observed under extreme pressure conditions. Cr/CrN coating strongly decreases micropitting and scuffing effect when it is tested under rolling‐sliding configuration. Under micro‐pitting conditions, coating protects the substrate and reduces the fatigue of uncoated discs. When adhesive wear (scuffing) is studied also Cr/CrN improves notable the nitrided steel performance. Under simultaneously corrosion‐wear conditions, Cr/CrN coating registered the lowest material loss because in this case only corrosion effect contributed to the coated surface degradation being the mechanical contribution inappreciable.

Originality/value

New multilayer coatings with improved wear performance and tribocorrosion resistance have been developed and comprehensively characterized. These coatings can be used in advanced gears for corrosive environmental conditions as well as with biodegradable lubricants.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2005

Vittal V. Prabhu, Indraneel V. Fuke, Sohyung Cho and Jogender Singh

The purpose of this paper is to provide insights for understanding the relationship between rapid manufacturing process for rhenium components in jet nozzle fabrication using…

1337

Abstract

Purpose

The purpose of this paper is to provide insights for understanding the relationship between rapid manufacturing process for rhenium components in jet nozzle fabrication using electron beam‐physical vapor deposition (EB‐PVD). Specifically, to develop a methodology to characterize and improve this new process through motion planning for maintaining uniformity in the deposition thickness.

Design/methodology/approach

This research first identifies several important objectives for the process, and then develops an optimized heuristic method based on a look‐ahead approach to generate motion plans for uniform thickness objective. In this heuristic, the surface of the workpiece is modeled using finite element method and the accumulated thickness of each layer on each element is computed based on its location in the vapor plume using a ray casting algorithm.

Findings

Computational experiments show that the proposed algorithm can potentially provide significant improvements in the uniformity of the layers and cost savings in manufacturing compared to prevailing practice, especially for low‐volume production such as aerospace applications.

Research limitations/implications

In this research, net‐shaped jet nozzle has been fabricated using a graphite mandrel. Therefore, the mandrel‐based approach can be limited to producing hollow components.

Practical implications

The proposed method is very generic and thus can be applied for multi‐material manufacturing process identifying the sweet spot of the intersecting vapor plumes.

Originality/value

This research can help the EB‐PVD process for rapid manufacturing which has been considered as financially expensive to be accepted in real practice by providing a relationship of the process‐to‐product transformation through the developed motion planning methods.

Details

Rapid Prototyping Journal, vol. 11 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 May 2023

Ali Abdallah Alalwan, Abdullah M. Baabdullah, Mutaz M. Al-Debei, Ramakrishnan Raman, Hitmi Khalifa Alhitmi, Amjad A. Abu-ElSamen and Yogesh K. Dwivedi

There is always a need to discover how a paradox between a customer’s desire for a more personalized experience and their privacy and security concerns would shape their intention…

Abstract

Purpose

There is always a need to discover how a paradox between a customer’s desire for a more personalized experience and their privacy and security concerns would shape their intention to continue using contactless payment methods. However, personalization–privacy paradox has not been well-covered over the area of contactless payment. Therefore, this study aims to empirically examine the impact of personalization–privacy paradox on the customers’ continued intention (CIN) to use contactless payment.

Design

/methodology/approach – The empirical part of the current study was conducted in Saudi Arabia by collecting the primary data using online questionnaire from a convenience sample size of 297 actual users of contactless payment methods.

Findings

Based on structural equation modeling, personalization and privacy invasion were approved to significantly impact perceived value of information disclosure (PVD). Strong causal associations were confirmed between perceived severity, structural assurance and response cost with privacy invasion. Finally, both PVD and privacy invasion significantly predict CIN.

Research limitations/implications

There are other important factors (i.e. technology interactivity, technology readiness, social influence, trust, prior experience, etc.) were not tested in the current study. Therefore, future studies would pay more attention regarding the impact of these factors. The current study data were also collected using a convenience sample of actual users of contactless payment methods. Therefore, there is a concern regarding the generalizability of the current study results to other kind of customers who have not used contactless payment.

Originality/value

This study has integrated both personalization–privacy paradox and protection motivation theory in one model. The current study holds value in providing a new and complete picture of the inhibitors and enablers of customers’ CIN to use contactless payment, including new types of inhibitors. Furthermore, personalization–privacy paradox has not been fully examined over the related area of Fintech and contactless payment in general. Therefore, this study was able to extend the theoretical horizon personalization–privacy paradox to new area (i.e. contactless payment) and new cultural context (Saudi Arabia).

Details

International Journal of Bank Marketing, vol. 42 no. 1
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 2 November 2015

Q.M Mehran, A.R Bushroa, M.A Fazal and M.M. Quazi

– The purpose of this study is to design and develop a new functional coating system for aerospace AL7075-T6 alloy that would evaluate the mechanical properties of the coating.

Abstract

Purpose

The purpose of this study is to design and develop a new functional coating system for aerospace AL7075-T6 alloy that would evaluate the mechanical properties of the coating.

Design/methodology/approach

This paper outlines the scratch adhesion characterisation of Cr/CrAlN coating using a combination of radio frequency (RF) and direct current (DC) physical vapour deposition (PVD) magnetron sputtering. The surface morphology, microstructure and chemical composition of the Cr/CrAlN film were evaluated by optical microscopy (OM), field emission scanning electron microscopy (FESEM) integrated with energy-dispersive X-Ray spectroscopy (EDX) and atomic force microscopy (AFM). The film-to-substrate adhesion was measured by a scratch test machine manufactured with a detection system, motorized stages, penetration depth sensors, optical microscope and tangential frictional load sensors.

Findings

The AFM and ultra-micro hardness results showed an increase in surface roughness to about 20 per cent and hardness to about 74 per cent. Moreover, the film-to-substrate adhesion strength of 1,814 mN was obtained with PVD deposition process.

Research limitations/implications

The main limitation of this work is caused by PVD deposition process. Besides, surface defects such as pinholes contribute to a decrease in adhesion strength.

Practical implications

The higher hardness of CrAlN coating is used to improve the properties of softer aluminium substrates. This hardness prevents ploughing-induced wear and provides greater adhesion strength by preventing coating delamination.

Originality/value

Until now, CrAlN is coated only on ferrous alloys. It has not yet been tried on aluminium alloys. Moreover, coating functionality depends on higher adhesion and failure mechanisms involved in the film-to-substrate system, which is significant in aerospace applications.

Details

Pigment & Resin Technology, vol. 44 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 340