Search results

1 – 10 of 11
Open Access
Article
Publication date: 4 August 2021

Zhipeng Zhang, Xiang Liu and Hao Hu

At the US passenger stations, train operations approaching terminating tracks rely on the engineer’s compliant behavior to safely stop before the end of the tracks. Noncompliance…

1391

Abstract

Purpose

At the US passenger stations, train operations approaching terminating tracks rely on the engineer’s compliant behavior to safely stop before the end of the tracks. Noncompliance actions from the disengaged or inattentive engineers would result in hazards to train passengers, train crewmembers and bystanders at passenger stations. Over the past decade, a series of end-of-track collisions occurred at passenger stations with substantial property damage and casualties. This study’s developed systemic model and discussions present policymakers, railway practitioners and academic researchers with a flexible approach for qualitatively assessing railroad safety.

Design/methodology/approach

To achieve a system-based, micro-level analysis of end-of-track accidents and eventually promote the safety level of passenger stations, the systems-theoretic accident modeling and processes (STAMP), as a practical systematic accident model widely used in the complex systems, is developed in view of environmental factors, human errors, organizational factors and mechanical failures in this complex socio-technical system.

Findings

The developed STAMP accident model and analytical results qualitatively provide an explicit understanding of the system hazards, constraints and hierarchical control structure of train operations on terminating tracks in the US passenger stations. Furthermore, the safety recommendations and practical options related to obstructive sleep apnea screening, positive train control-based collision avoidance mechanisms, robust system safety program plans and bumping posts are proposed and evaluated using the STAMP approach.

Originality/value

The findings from STAMP-based analysis can serve as valid references for policymakers, government accident investigators, railway practitioners and academic researchers. Ultimately, they can contribute to establishing effective emergent measures for train operations at passenger stations and promote the level of safety necessary to protect the public. The STAMP approach could be adapted to analyze various other rail safety systems that aim to ultimately improve the safety level of railroad systems.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2289

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 16 August 2022

Tünde Erdös, Joshua Wilt and Michael Tichelmann

Little is known about how individual differences play out in the process of authentic self-development (ASD) through workplace coaching. This article explores whether the Big Five…

2060

Abstract

Purpose

Little is known about how individual differences play out in the process of authentic self-development (ASD) through workplace coaching. This article explores whether the Big Five personality traits and affective, behavioral, cognitive and desire (ABCDs) components of the Big Five personality traits were relevant to ASD, specifically examining the role of affect as a potential mediator.

Design/methodology/approach

In total, 176 clients' personality was assessed pre-coaching. Aspects of ASD (perceived competence, goal commitment, self-concordance and goal stability) were assessed post-coaching. Clients' affect balance (AB) scores were obtained post-session.

Findings

Multilevel path models showed that higher levels of mean AB (but not the slope) mediated the associations between personality and perceived competence and goal commitment. Personality predicted goal self-concordance, but these effects were not mediated by AB, neither personality nor AB predicted goal stability.

Research limitations/implications

The authors encourage randomized controlled trials to further test findings of this study. Ruling out method variance is not possible completely. However, the authors put forth considerations to support the authors' claim that method variance did not overly influence our results.

Practical implications

These results suggest the necessity of an optimal experience of affect for ASD in workplace coaching and the understanding of how ABCDs, AB and ASD are related beyond coaching psychology.

Social implications

A deeper understanding of personality processes is important for fostering ASD to meet the challenges of management development in the authors' volatility, uncertainty, complexity and ambiguity (VUCA) world.

Originality/value

This is the first study to test personality as a process in workplace coaching linking personality to one of the most valued leadership skills: authenticity.

Details

Journal of Management Development, vol. 41 no. 6
Type: Research Article
ISSN: 0262-1711

Keywords

Open Access
Article
Publication date: 28 November 2023

Bob Ssekiziyivu, Vincent Bagire, Muhammed Ngoma, Gideon Nkurunziza, Ernest Abaho and Bashir Hassan

The purpose of this study was to explore how transport companies in Uganda execute strategies in a turbulent business environment.

Abstract

Purpose

The purpose of this study was to explore how transport companies in Uganda execute strategies in a turbulent business environment.

Design/methodology/approach

The study adopted an exploratory qualitative methodology using the data collected through an open-ended instrument. Utilizing the qualitative data analysis software QSR NVivo9, the data were analyzed following the Gioia's methodology. Verbatim texts were used to explain the emergent themes.

Findings

The study's findings show that to successfully execute strategies, companies in Uganda communicate, coordinate and put control systems in their operations. The activities undertaken include customer care, timely settlement of complaints, comfortable seats, playing local music, partnerships with reliable fuel stations, setting up strategic offices, cost management, use of experienced drivers, sub-renting vehicles and inspections.

Originality/value

The study produces a pioneering result of how transport companies execute strategies in a turbulent business environment, an aspect that has not been adequately highlighted in previous studies.

Details

Journal of Work-Applied Management, vol. 16 no. 1
Type: Research Article
ISSN: 2205-2062

Keywords

Open Access
Article
Publication date: 16 September 2022

Jan Sher Akmal, Mika Salmi, Roy Björkstrand, Jouni Partanen and Jan Holmström

Introducing additive manufacturing (AM) in a multinational corporation with a global spare parts operation requires tools for a dynamic supplier selection, considering both cost…

2241

Abstract

Purpose

Introducing additive manufacturing (AM) in a multinational corporation with a global spare parts operation requires tools for a dynamic supplier selection, considering both cost and delivery performance. In the switchover to AM from conventional manufacturing, the objective of this study is to find situations and ways to improve the spare parts service to end customers.

Design/methodology/approach

In this explorative study, the authors develop a procedure – in collaboration with the spare parts operations managers of a case company – for dynamic operational decision-making for the selection of spare parts supply from multiple suppliers. The authors' design proposition is based on a field experiment for the procurement and delivery of 36 problematic spare parts.

Findings

The practice intervention verified the intended outcomes of increased cost and delivery performance, yielding improved customer service through a switchover to AM according to situational context. The successful operational integration of dynamic additive and static conventional supply was triggered by the generative mechanisms of highly interactive model-based supplier relationships and insignificant transaction costs.

Originality/value

The dynamic decision-making proposal extends the product-specific make-to-order practice to the general-purpose build-to-model that selects the mode of supply and supplier for individual spare parts at an operational level through model-based interactions with AM suppliers. The successful outcome of the experiment prompted the case company to begin the introduction of AM into the company's spare parts supply chain.

Details

International Journal of Operations & Production Management, vol. 42 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 28 January 2022

Kiranmai Uppuluri and Dorota Szwagierczak

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their…

1062

Abstract

Purpose

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their performance for different sintering temperatures of thermistor layer, with and without insulative cover, as well as to investigate stability of the fabricated thermistors and their applicability in water quality monitoring.

Design/methodology/approach

After the characterization of starting NiMn2O4 spinel-based thermistor powder, it was converted to thick film paste which was screen printed on alumina substrate. Thermistor layers were sintered at four different sintering temperatures: 980°C, 1050°C, 1150°C and 1290°C. An interdigitated pattern of Ag-Pd conductive layer was used to reduce the resistance. Temperature-resistance characteristics were investigated in air and water, with and without insulative cover atop the thermistor layer. Stability of the fabricated thermistors after aging at 120°C for 300 h was also examined.

Findings

Thick film NiMn2O4 spinel thermistors, prepared by screen printing and sintering in the temperature range 980°C–1290°C, exhibited good negative temperature coefficient (NTC) characteristics in the temperature range −30°C to 145°C, including high temperature coefficient of resistance, good stability and applicability in water.

Originality/value

This study explores the range of sintering temperature that can be applied for NiMn2O4 thermistor thick films without compromising on the temperature sensing performance in air and water, as well as stability of the thermistors after aging at elevated temperatures.

Details

Sensor Review, vol. 42 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 21 May 2021

Ville Eloranta, Marco Ardolino and Nicola Saccani

This study aims to enhance the theoretical foundations of servitization research by establishing a theoretical connection with complexity management. The authors develop a…

4280

Abstract

Purpose

This study aims to enhance the theoretical foundations of servitization research by establishing a theoretical connection with complexity management. The authors develop a conceptual framework to describe complexity management mechanisms in servitization and digital platforms' specific role in allowing synergies between complexity reduction and absorption mechanisms.

Design/methodology/approach

A theory adaptation approach is used. Theory adaptation introduces new perspectives and conceptualization to the domain theory (servitization, with a focus on the role of digital platforms) by informing it with a method theory (complexity management).

Findings

This study provides four key contributions to the servitization literature: (1) connecting the servitization and complexity-management terminologies, (2) identifying and classifying complexity-management mechanisms in servitization, (3) conceptualizing digital platforms' role in servitization complexity management and (4) recognizing digital platforms' complexity-management synergies.

Originality/value

This study highlights that by using digital platforms in servitization and understanding the platform approach more thoroughly, companies can gain new capabilities and opportunities to manage and leverage complexity.

Details

International Journal of Operations & Production Management, vol. 41 no. 5
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 15 February 2024

Di Kang, Steven W. Kirkpatrick, Zhipeng Zhang, Xiang Liu and Zheyong Bian

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is…

Abstract

Purpose

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is to propose a simplified approach aimed at addressing this research gap by developing a physics-informed 1-D model. The model is used to simulate train dynamics through a time-stepping algorithm, incorporating derailment data after the point of derailment.

Design/methodology/approach

In this study, a simplified approach is adopted that applies a 1-D kinematic analysis with data obtained from various derailments. These include the length and weight of the rail cars behind the point of derailment, the train braking effects, derailment blockage forces, the grade of the track and the train rolling and aerodynamic resistance. Since train braking/blockage effects and derailment blockage forces are not always available for historical or potential train derailment, it is also necessary to fit the historical data and find optimal parameters to estimate these two variables. Using these fitted parameters, a detailed comparison can be performed between the physics-informed 1-D model and previous statistical models to predict the derailment severity.

Findings

The results show that the proposed model outperforms the Truncated Geometric model (the latest statistical model used in prior research) in estimating derailment severity. The proposed model contributes to the understanding and prevention of train derailments and hazmat release consequences, offering improved accuracy for certain scenarios and train types

Originality/value

This paper presents a simplified physics-informed 1-D model, which could help understand the derailment mechanism and, thus, is expected to estimate train derailment severity more accurately for certain scenarios and train types compared with the latest statistical model. The performance of the braking response and the 1-D model is verified by comparing known ride-down profiles with estimated ones. This validation process ensures that both the braking response and the 1-D model accurately represent the expected behavior.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 16 October 2023

Baris Cogan and Birgit Milius

Increasing demand on rail transport speeds up the introduction of new technical systems to optimize the rail traffic and increase competitiveness. Remote control of trains is seen…

Abstract

Purpose

Increasing demand on rail transport speeds up the introduction of new technical systems to optimize the rail traffic and increase competitiveness. Remote control of trains is seen as a potential layer of resilience in railway operations. It allows for operating and controlling automated trains and communicating and coordinating with other stakeholders of the railway system. This paper aims to present the first results of a multi-phased simulator study on the development and optimization of remote train driving concepts from the operators’ point of view.

Design/methodology/approach

The presented concept was developed by benchmarking good practices. Two phases of iterative user tests were conducted to evaluate the user experience and preferences of the developed human-machine-interface concept. Basic training requirements were identified and evaluated.

Findings

Results indicate positive feedback on the overall system as a fallback solution. HMI elicited positive emotions regarding pleasure and dominance, but low arousal levels. Train drivers had more conservative views on the system compared to signalers and students. The training activities achieved increased awareness and understanding of the system for future operators. Inclusion of potential users in the development of future systems has the potential to improve user acceptance. The iterative user experiments were useful in obtaining some of the needs and preferences of different user groups.

Originality/value

Multi-phase user tests were conducted to identify and to evaluate the requirements and preferences of remote operators using a simplified HMI. Training analysis provides important aspects to consider for the training of future users.

Details

Smart and Resilient Transportation, vol. 5 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 21 April 2023

Muhammad Fayyaz Nazir, Ellen Wayenberg and Shahzadah Fahed Qureshi

At the outbreak of the COVID-19 pandemic, the absence of pharmaceutical agents meant that policy institutions had to intervene by providing nonpharmaceutical interventions (NPIs)…

Abstract

Purpose

At the outbreak of the COVID-19 pandemic, the absence of pharmaceutical agents meant that policy institutions had to intervene by providing nonpharmaceutical interventions (NPIs). To satisfy this need, the World Health Organization (WHO) issued policy guidelines, such as NPIs, and the government of Pakistan released its own policy document that included social distancing (SD) as a containment measure. This study explores the policy actors and their role in implementing SD as an NPI in the context of the COVID-19 pandemic.

Design/methodology/approach

The study adopted the constructs of Normalization Process Theory (NPT) to explore the implementation of SD as a complex and novel healthcare intervention under a qualitative study design. Data were collected through document analysis and interviews, and analysed under framework analysis protocols.

Findings

The intervention actors (IAs), including healthcare providers, district management agents, and staff from other departments, were active in implementation in the local context. It was observed that healthcare providers integrated SD into their professional lives through a higher level of collective action and reflexive monitoring. However, the results suggest that more coherence and cognitive participation are required for integration.

Originality/value

This novel research offers original and exclusive scenario narratives that satisfy the recent calls of the neo-implementation paradigm, and provides suggestions for managing the implementation impediments during the pandemic. The paper fills the implementation literature gap by exploring the normalisation process and designing a contextual framework for developing countries to implement guidelines for pandemics and healthcare crises.

Details

Public Administration and Policy, vol. 26 no. 1
Type: Research Article
ISSN: 1727-2645

Keywords

1 – 10 of 11