Search results

1 – 10 of over 1000
Article
Publication date: 17 January 2020

Yi Zhang, Haihua Zhu and Dunbing Tang

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the…

Abstract

Purpose

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the production environment becomes more and more complex. To improve the efficiency of solving multi-objective flexible job shop scheduling problem (FJSP), an improved hybrid particle swarm optimization algorithm (IH-PSO) is proposed.

Design/methodology/approach

After reviewing literatures on FJSP, an IH-PSO algorithm for solving FJSP is developed. First, IH-PSO algorithm draws on the crossover and mutation operations of genetic algorithm (GA) algorithm and proposes a new method for updating particles, which makes the offspring particles inherit the superior characteristics of the parent particles. Second, based on the improved simulated annealing (SA) algorithm, the method of updating the individual best particles expands the search scope of the domain and solves the problem of being easily trapped in local optimum. Finally, analytic hierarchy process (AHP) is used in this paper to solve the optimal solution satisfying multi-objective optimization.

Findings

Through the benchmark experiment and the production example experiment, it is verified that the proposed algorithm has the advantages of high quality of solution and fast speed of convergence.

Research limitations/implications

This method does not consider the unforeseen events that occur during the process of scheduling and cause the disruption of normal production scheduling activities, such as machine breakdown.

Practical implications

IH-PSO algorithm combines PSO algorithm with GA and SA algorithms. This algorithm retains the advantage of fast convergence speed of traditional PSO algorithm and has the characteristic of inheriting excellent genes. In addition, the improved SA algorithm is used to solve the problem of falling into local optimum.

Social implications

This research provides an efficient scheduling method for solving the FJSP problem.

Originality/value

This research proposes an IH-PSO algorithm to solve the FJSP more efficiently and meet the needs of multi-objective optimization.

Details

Kybernetes, vol. 49 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 May 2017

Young Wook Seo, Kun Chang Lee and Sangjae Lee

For those who plan research funds and assess the research performance from the funds, it is necessary to overcome the limitations of the conventional classification of evaluated…

Abstract

Purpose

For those who plan research funds and assess the research performance from the funds, it is necessary to overcome the limitations of the conventional classification of evaluated papers published by the research funds. Besides, they need to promote the objective, fair clustering of papers, and analysis of research performance. Therefore, the purpose of this paper is to find the optimum clustering algorithm using the MATLAB tools by comparing the performances of and the hybrid particle swarm optimization algorithms using the particle swarm optimization (PSO) algorithm and the conventional K-means clustering method.

Design/methodology/approach

The clustering analysis experiment for each of the three fields of study – health and medicine, physics, and chemistry – used the following three algorithms: “K-means+Simulated annealing (SA)+Adjustment of parameters+PSO” (KASA-PSO clustering), “K-means+SA+PSO” clustering, “K-means+PSO” clustering.

Findings

The clustering analyses of all the three fields showed that KASA-PSO is the best method for the minimization of fitness value. Furthermore, this study administered the surveys intended for the “performance measurement of decision-making process” with 13 members of the research fund organization to compare the group clustering by the clustering analysis method of KASA-PSO algorithm and the group clustering by research funds. The results statistically demonstrated that the group clustering by the clustering analysis method of KASA-PSO algorithm was better than the group clustering by research funds.

Practical implications

This study examined the impact of bibliometric indicators on research impact of papers. The results showed that research period, the number of authors, and the number of participating researchers had positive effects on the impact factor (IF) of the papers; the IF that indicates the qualitative level of papers had a positive effect on the primary times cited; and the primary times cited had a positive effect on the secondary times cited. Furthermore, this study clearly showed the decision quality perceived by those who are working for the research fund organization.

Originality/value

There are still too few studies that assess the research project evaluation mechanisms and its effectiveness perceived by the research fund managers. To fill the research void like this, this study aims to propose PSO and successfully proves validity of the proposed approach.

Article
Publication date: 2 October 2017

Volkan Yasin Pehlivanoglu

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Abstract

Purpose

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Design/methodology/approach

The new algorithm emphasizes the use of a direct and an indirect design prediction based on local surrogate models in particle swarm optimization (PSO) algorithm. Local response surface approximations are constructed by using radial basis neural networks. The principal role of surrogate models is to answer the question of which individuals should be placed into the next swarm. Therefore, the main purpose of surrogate models is to predict new design points instead of estimating the objective function values. To demonstrate its merits, the new approach and six comparative algorithms were applied to two different test cases including surface fitting of a geographical terrain and an inverse design of a wing, the averaged best-individual fitness values of the algorithms were recorded for a fair comparison.

Findings

The new algorithm provides more than 60 per cent reduction in the required generations as compared with comparative algorithms.

Research limitations/implications

The comparative study was carried out only for two different test cases. It is possible to extend test cases for different problems.

Practical implications

The proposed algorithm can be applied to different inverse design problems.

Originality/value

The study presents extra ordinary application of double surrogate modeling usage in PSO for inverse design problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 March 2015

Jehad Ababneh

– The purpose of this paper is to propose an algorithm that combines the particle swarm optimization (PSO) with the biogeography-based optimization (BBO) algorithm.

Abstract

Purpose

The purpose of this paper is to propose an algorithm that combines the particle swarm optimization (PSO) with the biogeography-based optimization (BBO) algorithm.

Design/methodology/approach

The BBO and the PSO algorithms are jointly used in to order to combine the advantages of both algorithms. The efficiency of the proposed algorithm is tested using some selected standard benchmark functions. The performance of the proposed algorithm is compared with that of the differential evolutionary (DE), genetic algorithm (GA), PSO, BBO, blended BBO and hybrid BBO-DE algorithms.

Findings

Experimental results indicate that the proposed algorithm outperforms the BBO, PSO, DE, GA, and the blended BBO algorithms and has comparable performance to that of the hybrid BBO-DE algorithm. However, the proposed algorithm is simpler than the BBO-DE algorithm since the PSO does not have complex operations such as mutation and crossover used in the DE algorithm.

Originality/value

The proposed algorithm is a generic algorithm that can be used to efficiently solve optimization problems similar to that solved using other popular evolutionary algorithms but with better performance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 December 2002

Huiyuan Fan

In this paper, a modification strategy is proposed for the particle swarm optimization (PSO) algorithm. The strategy adds an adaptive scaling term into the algorithm, which aims…

1489

Abstract

In this paper, a modification strategy is proposed for the particle swarm optimization (PSO) algorithm. The strategy adds an adaptive scaling term into the algorithm, which aims to increase its convergence rate and thereby to obtain an acceptable solution with a lower number of objective function evaluations. Such an improvement can be useful in many practical engineering optimizations where the evaluation of a candidate solution is a computationally expensive operation and consequently finding the global optimum or a good sub‐optimal solution with the algorithm is too time consuming, or even impossible within the time available. The modified PSO algorithm was empirically studied with a suite of four well‐known benchmark functions, and was further examined with a practical application case, a neural‐network‐based modeling of aerodynamic data. The numerical simulation demonstrates that the modified algorithm statistically outperforms the original one.

Details

Engineering Computations, vol. 19 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2019

Zhengrong Jiang, Quanpan Lin, Kairong Shi and Wenzhi Pan

The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and particle swarm optimization hybrid algorithm (PGSA–PSO hybrid…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and particle swarm optimization hybrid algorithm (PGSA–PSO hybrid algorithm), for solving structural optimization problems.

Design/methodology/approach

To further enhance the optimization efficiency and precision of this algorithm, the optimization solution process of PGSA–PSO comprises two steps. First, an excellent initial growth point is selected by PSO. Then, the global optimal solution can be obtained quickly by PGSA and its improved strategy called growth space adjustment strategy. A typical mathematical example is provided to verify the capacity of the new hybrid algorithm to effectively improve the global search capability and search efficiency of PGSA. Moreover, PGSA–PSO is applied to the optimization design of a suspended dome structure.

Findings

Through typical mathematical example, the improved strategy can improve the optimization efficiency of PGSA considerably, and an initial growth point that falls near the global optimal solution can be obtained. Through the optimization of the pre-stress of a suspended dome structure, compared with other methods, the hybrid algorithm is effective and feasible in structural optimization.

Originality/value

Through the examples of suspended dome structure, it shows that the optimization efficiency and precision of PGSA–PSO are better than those of other algorithms and methods. PGSA–PSO is effective and feasible in structural optimization problems such as pre-stress optimization, size optimization, shape optimization and even topology optimization.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2009

Gary G. Yen and Brian Ivers

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem…

1471

Abstract

Purpose

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem (JSP), a class of NP‐hard optimization problems. The approach is to be built on a PSO with multiple independent swarms. PSO was inspired by bird flocking and animal social behaviors. The particles operate collectively like a swarm that flies through the hyperdimensional space to search for possible optimal solutions. The behavior of the particles is influenced by their tendency to learn from their personal past experience and from the success of their peers to adjust their flying speed and direction. Research in fusing the multiple‐swarm concept into PSO is well‐established in solving single objective optimization problems and multimodal problems.

Design/methodology/approach

This study examines the optimization of the JSP via a search space division scheme and use of the meta‐heuristic method of PSO by assigning each machine in a JSP an independent swarm of particles. The use of multiple swarms in PSO is motivated by the idea of “divide and conquer” to reduce the computational complexity incurred through solving a NP‐hard combinatorial optimization problem. The resulted design, JSP/PSO algorithm, fully exploits the computing power presented by the multiple‐swarm PSO.

Findings

Simulation experiments show that the proposed JSP/PSO algorithm can effectively solve the JSP problems from small to median size. If certain mechanism of information sharing between swarms can be incorporated, it is believed that the new design could offer even more computing power to tackle the large‐sized problems.

Originality/value

The proposed JSP/PSO algorithm is effective in solving JSPs. The proposed algorithm shows considerable promise when searching the space of non‐delay schedules. It demands relatively lower number of function evaluations compared to other state‐of‐the‐art. The drawback to the JSP/PSO is that the GT scheduling adopted is too computationally expensive. Future works will address this concern.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 28 October 2021

Cuicui Du and Deren Kong

Three-axis accelerometers play a vital role in monitoring the vibrations in aircraft machinery, especially in variable flight temperature environments. The sensitivity of a…

Abstract

Purpose

Three-axis accelerometers play a vital role in monitoring the vibrations in aircraft machinery, especially in variable flight temperature environments. The sensitivity of a three-axis accelerometer under different temperature conditions needs to be calibrated before the flight test. Hence, the authors investigated the efficiency and sensitivity calibration of three-axis accelerometers under different conditions. This paper aims to propose the novel calibration algorithm for the three-axis accelerometers or the similar accelerometers.

Design/methodology/approach

The authors propose a hybrid genetic algorithm–particle swarm optimisation–back-propagation neural network (GA–PSO–BPNN) algorithm. This method has high global search ability, fast convergence speed and strong non-linear fitting capability; it follows the rules of natural selection and survival of the fittest. The authors describe the experimental setup for the calibration of the three-axis accelerometer using a three-comprehensive electrodynamic vibration test box, which provides different temperatures. Furthermore, to evaluate the performance of the hybrid GA–PSO–BPNN algorithm for sensitivity calibration, the authors performed a detailed comparative experimental analysis of the BPNN, GA–BPNN, PSO–BPNN and GA–PSO–BPNN algorithms under different temperatures (−55, 0 , 25 and 70 °C).

Findings

It has been showed that the prediction error of three-axis accelerometer under the hybrid GA–PSO–BPNN algorithm is the least (approximately ±0.1), which proved that the proposed GA–PSO–BPNN algorithm performed well on the sensitivity calibration of the three-axis accelerometer under different temperatures conditions.

Originality/value

The designed GA–PSO–BPNN algorithm with high global search ability, fast convergence speed and strong non-linear fitting capability has been proposed to decrease the sensitivity calibration error of three-axis accelerometer, and the hybrid algorithm could reach the global optimal solution rapidly and accurately.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 March 2008

Stefan Janson, Daniel Merkle and Martin Middendorf

The purpose of this paper is to present an approach for the decentralization of swarm intelligence algorithms that run on computing systems with autonomous components that are…

1874

Abstract

Purpose

The purpose of this paper is to present an approach for the decentralization of swarm intelligence algorithms that run on computing systems with autonomous components that are connected by a network. The approach is applied to a particle swarm optimization (PSO) algorithm with multiple sub‐swarms. PSO is a nature inspired metaheuristic where a swarm of particles searches for an optimum of a function. A multiple sub‐swarms PSO can be used for example in applications where more than one optimum has to be found.

Design/methodology/approach

In the studied scenario the particles of the PSO algorithm correspond to data packets that are sent through the network of the computing system. Each data packet contains among other information the position of the corresponding particle in the search space and its sub‐swarm number. In the proposed decentralized PSO algorithm the application specific tasks, i.e. the function evaluations, are done by the autonomous components of the system. The more general tasks, like the dynamic clustering of data packets, are done by the routers of the network.

Findings

Simulation experiments show that the decentralized PSO algorithm can successfully find a set of minimum values for the used test functions. It was also shown that the PSO algorithm works well for different type of networks, like scale‐free network and ring like networks.

Originality/value

The proposed decentralization approach is interesting for the design of optimization algorithms that can run on computing systems that use principles of self‐organization and have no central control.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 February 2022

Arezoo Gazori-Nishabori, Kaveh Khalili-Damghani and Ashkan Hafezalkotob

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose…

Abstract

Purpose

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose NBG-DEA model to measure the performance of decision-making units with complicated network structures.

Design/methodology/approach

As the proposed NBG-DEA model is a non-linear mathematical programming, finding its global optimum solution is hard. Therefore, meta-heuristic algorithms are used to solve non-linear optimization problems. Fortunately, the NBG-DEA model optimizes the well-formed problem, so that it can be solved by different non-linear methods including meta-heuristic algorithms. Hence, a meta-heuristic algorithm, called particle swarm optimization (PSO) is proposed to solve the NBG-DEA model in this paper. The case study is Industrial Management Institute (IMI), which is a leading organization in providing consulting management, publication and educational services in Iran. The sub-processes of IMI are considered as players where their pay-off is defined as the efficiency of sub-processes. The network structure of IMI is studied during multiple periods.

Findings

The proposed NBG-DEA model is applied to measure the efficiency scores in the IMI case study. The solution found by the PSO algorithm, which is implemented in MATLAB software, is compared with that generated by a classic non-linear method called gradient descent implemented in LINGO software.

Originality/value

The experiments proved that suitable and feasible solutions could be found by solving the NBG-DEA model and shows that PSO algorithm solves this model in reasonable central process unit time.

Details

Journal of Modelling in Management, vol. 18 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of over 1000