Search results

1 – 2 of 2
Article
Publication date: 9 January 2024

Sébastien Charles

The aim of this article is to assess the macroeconomic consequences of some specific aspects of financialization (i.e. share buy-back) using a hybrid post-Keynesian model of…

Abstract

Purpose

The aim of this article is to assess the macroeconomic consequences of some specific aspects of financialization (i.e. share buy-back) using a hybrid post-Keynesian model of growth and distribution based on Kaldorian and Kaleckian characteristics.

Design/methodology/approach

The study follows a post-Keynesian approach and deals with financialization issues by implementing several numerical simulations.

Findings

The numerical simulations reveal the negative real impacts of massive share repurchases on the rate of accumulation because they immediately siphon off revenues directly intended for investment projects. Moreover, the negative effect of share buy-backs is reinforced especially when firms' investment decisions are more sensitive to a variation in retained earnings. Next, this macro-model also reproduces several well-known figures of the Kaleckian tradition and the paradox of costs.

Research limitations/implications

The present article can be considered as a starting point for further theoretical extensions and requires empirical validation.

Originality/value

The Kaldor-Kalecki macro-model could be useful for policymakers who are interested in containing some of the negative excesses of financialization.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 1 February 2024

Suvranshu Pattanayak, Susanta Kumar Sahoo, Ananda Kumar Sahoo, Raviteja Vinjamuri and Pushpendra Kumar Dwivedi

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc…

Abstract

Purpose

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc attachment, and the system’s arc is ignited between tungsten electrode and filler wire.

Design/methodology/approach

The effect of various deposition conditions (welding voltage, travel speed and wire feed speed [WFS]) on bead characteristics is studied through response surface methodology (RSM). Under optimum deposition condition, a single-bead and thin-layered part is fabricated and subjected to microstructural, tensile testing and X-ray diffraction study. Moreover, bulk texture analysis has been carried out to illustrate the effect of thermal cycles and tensile-induced deformations on fibre texture evolutions.

Findings

RSM illustrates WFS as a crucial deposition parameter that suitably monitors bead width, height, penetration depth, dilution, contact angle and microhardness. The ferritic (acicular and polygonal) and lath bainitic microstructure is transformed into ferrite and pearlitic micrographs with increasing deposition layers. It is attributed to a reduced cooling rate with increased depositions. Mechanical testing exhibits high tensile strength and ductility, which is primarily due to compressive residual stress and lattice strain development. In deposits, ϒ-fibre evolution is more resilient due to the continuous recrystallisation process after each successive deposition. Tensile-induced deformation mostly favours ζ and ε-fibre development due to high strain accumulations.

Originality/value

This modified electrode arrangement in NTA-WAM suitably reduces spatter and bead height deviation. Low penetration depth and dilution denote a reduction in heat input that enhances the cooling rate.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2