Search results

1 – 10 of over 1000
Article
Publication date: 31 July 2018

Mariam Mir, Murtaza Najabat Ali, Umar Ansari, Patrick J. Smith, Amber Zahoor, Faisal Qayyum and Sabtain Abbas

The fabrication and characterization of a hydrogel-based conductometric sensor have been carried out. The purpose of this research is to fabricate a small robust hydrogel-based…

Abstract

Purpose

The fabrication and characterization of a hydrogel-based conductometric sensor have been carried out. The purpose of this research is to fabricate a small robust hydrogel-based conductometric sensor for real-time monitoring of pH in the physiological range.

Design/methodology/approach

A pH-responsive Chitosan/Gelatin composite hydrogel has been used for this purpose. This study reports and analyzes the sensing response obtained from four hydrogel compositions with varying Chitosan/Gelatin ratios. The pH-responsive nature of the hydrogel has been mapped out through volumetric and conductometric tests. An attempt has been made to correlate these characteristics with the physico-chemical nature of the hydrogel through scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques.

Findings

The four hydrogel compositions differed on the basis of gel composition ratios; the conductometric analysis results prove that the sensor with the hydrogel composition (Chitosan 2 per cent, Gelatin 7 per cent, ratio 1:2) produces the best pH resolution in the pH range of 4 to 9. The sensing mechanisms and the differences obtained between individual sensor outputs have been discussed in detail. On the basis of this extensive in vitro assessment, it has been concluded that while key pendant functional groups contribute to pH-responsive characteristics of the hydrogel, the overall sensitivity of the sensors gel component to surrounding pH is also determined by the crystalline to amorphous ratio of the hydrogel composite, its interpenetrating cross-linked structure and the relative ratio of the hydrophilic to the pH-sensitive components.

Practical implications

The conductometric sensor results prove that the fabricated sensor with the shortlisted hydrogel composition shows good sensitivity in the physiological pH range (4 to 9) and it has the potential for use in point of care medical devices for diagnostic purposes.

Originality/value

This is the first reported version of the fabrication and testing and analysis/comparison of a hydrogel-based conductometric sensor based on this composition. The work is original and has not been replicated anywhere.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 March 2015

Munezza Ata Khan, Umar Ansari and Murtaza Najabat Ali

Real-time monitoring of wound or injured tissues is critical for speedy recovery, and the onset of a cascade of biochemical reactions provides potential biomarkers that facilitate…

Abstract

Purpose

Real-time monitoring of wound or injured tissues is critical for speedy recovery, and the onset of a cascade of biochemical reactions provides potential biomarkers that facilitate the process of wound monitoring, e.g. pH, temperature, moisture level, bacterial load, cytokines, interleukins, etc. Among all the biomarkers, pH has been known to have a profound impact on the wound healing process, and is used to determine the incidence of bacterial infection of the wound (persistently elevated alkaline pH), proteolytic activity at the site of injury, take rate in skin grafting, wound healing stage and preparation for wound debridement.

Design/methodology/approach

This review highlights the significance of pH in determination of clinical parameters and for selection of an appropriate treatment regime, and it presents an in-depth analysis of the designs and fabrication methods that use integrated pH sensors, which have been reported to date for the real-time monitoring of wound healing.

Findings

For an expedited wound healing process, the significance of pH mandated the need of an integrated sensor system that would facilitate real-time monitoring of healing wounds and obviate the requirement of redressing or complicated testing procedures, which are both labor-intensive and painful for the patient. The review also discussed different types of sensor systems which were developed using hydrogel as a pH-responsive system coupled with voltammetry, potentiometry, impedimetric and flex-circuit inductive transducer systems. All of the mentioned devices have considerable potential for clinical applications, and there is need of in vivo testing to validate their efficiency and sensitivity under practical scenarios.

Originality/value

This manuscript is an original review of literature, and permission has been granted to use the figures from previously published papers.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 December 2020

Jayaraman Kathirvelan

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In…

Abstract

Purpose

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In the recent past, it is evident that there is a tremendous growth in the field of flexible electronics and sensors fabrication technologies all around the world. Even though, there is a significant amount of research has been carried in the past decade, but still there is a huge need for exploring novel materials for low temperature processing, optimized printing methods and customized printing devices with accurate feature control.

Design/methodology/approach

The author has done an extensive literature survey in the proposed area and found that the researchers are showing significant interest in exploring novel materials, new conductive ink processing methods suitable for additive manufacturing, and fabrication technologies for developing the plastic substrate-based flexible electronics for the on growing demands of wearable devices in the market.

Findings

The author has consolidated some of the recent advancements in the area of flexible sensing electronics using the inkjet-printing platform carried out by the researchers. The novel customized inkjet-printing technology, materials selections for device development, compatibility of the materials for the inkjet-printing process and the interesting results of the devices fabricated are highlighted in this paper.

Originality/value

The author has reported the novel inkjet-printing platforms explored by researchers in the recent past for various applications which primarily includes gas sensing. The author has consolidated in a crisp manner about the technology, materials compatible for inkjet-printing, and the exciting results of the printed devices. The author has reported the advantages and challenges of the proposed methods by the researchers. This work will bridge the technical gap in the inkjet-printing technology and will be useful for the researchers to take forward the research work on this domain to the next level.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 30 September 2020

Rashbir Singh, Prateek Singh and Latika Kharb

Internet of Things (IoT) and artificial intelligence are two leading technologies that bought revolution to each and every field of humans using in daily life by making everything…

Abstract

Internet of Things (IoT) and artificial intelligence are two leading technologies that bought revolution to each and every field of humans using in daily life by making everything smarter than ever. IoT leads to a network of things which creates a self-configuring network. Improving farm productivity is essential to meet the rapidly growing demand for food. In this chapter, the authors have introduced a smart greenhouse by integration of two leading technologies in the market (i.e., Machine Learning and IoT). In proposed model, several sensors are used for data collection and managing the environment of greenhouse. The idea is to propose an IoT and Machine Learning based smart nursery that helps in healthy growing and monitoring of the seed. The structure will be a dome-like structure for observation and isolation of an egg with various sensors like pressure, humidity, temperature, light, moisture, conductivity, air quality, etc. to monitor the nursery internal environment and maintain the control and flow of water and other minerals inside the nursery. The nursery will have a solar panel from which it stores the electricity generated from the sun, a small fan to control the flow of air and pressure. A camera will also be equipped inside the nursery that will use computer vision technology to monitor the health of the plant and will be trained on the past data to notify the user if the plant is diseased or need attention.

Details

Big Data Analytics and Intelligence: A Perspective for Health Care
Type: Book
ISBN: 978-1-83909-099-8

Keywords

Article
Publication date: 1 February 1990

Sensor survey highlights centres of excellence in the UK.

Abstract

Sensor survey highlights centres of excellence in the UK.

Details

Sensor Review, vol. 10 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 27 September 2023

Siddhesh Umesh Mestry, Vardhan B. Satalkar and S.T. Mhaske

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching…

Abstract

Purpose

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching that are pH sensitive.

Design/methodology/approach

The visible absorption wavelength (λmax) was extended when azo chromophore was included in imine-based systems. The dyed patterns created sophisticated colour-changing paper packaging sensors with pH-sensitive chromophores using alum as a mediator or mordant. Due to the tight adhesive bonding, the dyes on paper’s cellulose fibres could not be removed by ordinary water even at extremely high or low pH, which was confirmed by scanning electron microscopy analysis. The dyed patterns demonstrated an evident, sensitive and fast colour-changing mechanism with varying pH, from pale yellow to red for Dye-I and from pale yellow to brown-violet for Dye-II.

Findings

The λmax for colour changing was recorded from 400 to 490 nm for Dye-I, whereas from 400 to 520 for Dye-II. The freshness judgement of food was checked using actual experiments with cooked crab spoilage, where the cooked crab was incubated at 37 oC for 6 h to see the noticeable colour change from yellow to brown-violet with Dye-II. The colour-changing mechanism was studied with Fourier transform infrared (FTIR) spectra at different pH, and thin layer chromatography, nuclear magnetic resonance and FTIR spectroscopy studied the desired structure formation of the dyes. Potential uses for smart packaging sensors include quickly detecting food freshness during transportation or right before consumption.

Originality/value

1. Two novel azo-imine dyes have been synthesized with a pH-responsive effect. 2. The pH-responsive mechanism was studied. 3. The study was supported by computational chemistry using density functional theory. 4. The obtained dyes were used to make pH-responsive sensors for seafood packaging to judge the freshness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2013

Vinod Kumar Khanna

This paper aims to focus on the steps necessary to bolster marketability of ISFET‐based sensors, keeping in view the present technological status of ISFET and its limitations.

Abstract

Purpose

This paper aims to focus on the steps necessary to bolster marketability of ISFET‐based sensors, keeping in view the present technological status of ISFET and its limitations.

Design/methodology/approach

Technical problems inhibiting commercialization of ISFET‐based sensors are highlighted. The problems considered include sensitivity, drift, cleaning, disposability, reference systems, chip structural designs, packaging, light, temperature, hysteresis and body effects, and instability of biosensors. Available solutions are prescribed, discussing both direct and indirect ways of addressing the problems of ISFET sensors.

Findings

The history of progress of ISFET (Ion‐sensitive Field‐Effect Transistor) is synonymous with the ways and means devised by different researchers for surmounting (direct approach) or acclimatizing to the shortcomings of this device (indirect approach). Signal conditioning hardware and software considerably help in obviating issues such as drift, hysteresis and thermal effects.

Research limitations/implications

Reliable on‐chip reference electrodes and ISFET packaging for continuous online applications are interesting research areas.

Practical implications

Where a plausible solution exists, it should be readily availed; otherwise the device limitation should be understood and ingeniously bypassed. Compromising solutions targeted on the specific applications pave the way towards widespread utilization of these sensors in industrial, biomedical, food and environmental sectors.

Originality/value

The study helps in understanding the problems besetting utilization of ISFETs, calling attention to essential remedies for ISFET‐based products. It provides information of value to those involved in ISFET measurements.

Article
Publication date: 18 May 2021

Kesavan Devarayan, Padmavathi P. and Kopperundevi Sivakami Nagaraju

Development of thin film sensors with pH function for noninvasive real-time monitoring of spoilage of packed seafood such as fish, crab and shrimp are described in this study. It…

48

Abstract

Purpose

Development of thin film sensors with pH function for noninvasive real-time monitoring of spoilage of packed seafood such as fish, crab and shrimp are described in this study. It is also the purpose of this study to enhance the leaching resistance of the sensors by using a suitable strategy and to quantitatively correlate the sensor’s halochromism with the total volatile amine.

Design/methodology/approach

To prepare halochromic sensors with better leaching resistance, biocompatible materials such as starch, agar, polyvinyl alcohol and cellulose acetate along with a halochromic dye were used to prepare the thin film sensors. These thin films were evaluated for monitoring the spoilage of packed seafood at room temperature, 4°C and −2°C up to 30 days. The halochromic sensors were characterized using UV-visible and FT-IR spectroscopy.

Findings

CIELab analyses of the halochromism of the thin film sensors revealed that the color changes exhibited by the sensors in response to the spoilage of seafood are visually distinguishable. Further, the halochromic response of the thin films was directly proportional to the amount of total volatile base nitrogen that evolved from the packed seafood. Excellent leaching resistance was observed for the developed thin film sensors. The halochromic property of the sensors is reversible and thus the sensors are recyclable. Besides, the thin film sensors exhibited significant biodegradability.

Originality/value

This study provides insights for use of different biocompatible polymers for obtaining enhanced leaching resistance in halochromic sensors. Further, the color changes exhibited by the sensors are in line with the total volatile amines evolved from the packed seafood. These results highlight the importance of the developed halochromic thin film sensors for real-time monitoring of the spoilage of packed seafood.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 May 2020

Gayathri Mani, Malathy Chidambaranathan and Snehit Sagi

In India, agriculture is considered as the major source of income for a major sector of people. Our country's GDP (Gross Domestic Product) can increase only if we focus on…

Abstract

Purpose

In India, agriculture is considered as the major source of income for a major sector of people. Our country's GDP (Gross Domestic Product) can increase only if we focus on agriculture and its growth toward global economy. There have been several attempts to improve the agricultural sector since decades.

Design/methodology/approach

This work describes about the design of a device which continuously monitors the plant growth and sends the data to a centralized database, where data is dynamically analyzed based on base references using various machine learning algorithms like regression, gradient descent, clustering etc.

Findings

This paper aims at analyzing the plant growth in of our country and focuses on the improvement of plant growth based on factors such as temperature, air moisture, radiant energy, carbon dioxide levels, soil pH& temperature through the design of a device.

Originality/value

It is anticipated to provide a solution by analyzing the plant growth percentage in different regions over a period of time. Based on the inferences, we will be able to suggest an optimum environment for the plant species to grow best. Various sensors like temperature and humidity sensors, light sensors and pH electrodes can be used in collecting data from the plant environment.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Content available
Article
Publication date: 1 June 2000

91

Abstract

Details

Sensor Review, vol. 20 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000