Search results

1 – 10 of 588
Article
Publication date: 2 March 2010

Hye Rim Kim and Wha Soon Song

The purpose of this paper is to investigate the conditions of the treatment using commercial lipase to improve the hydrophilicity of the polyethylene terephthalate (PET) fabrics.

Abstract

Purpose

The purpose of this paper is to investigate the conditions of the treatment using commercial lipase to improve the hydrophilicity of the polyethylene terephthalate (PET) fabrics.

Design/methodology/approach

The lipase treatment conditions, such as the pH, temperature, treatment time, and concentration, are controlled by measuring the hydrolytic activity, moisture regain, and wettability of the treated fabrics. The effects of calcium ions on the moisture regain and wettability of the treated fabrics are also evaluated.

Findings

The lipase treatment conditions for PET fabrics are controlled at a pH of 7.5, a temperature of 30°C, a treatment time of 60 min, and a lipase concentration of 50 percent (owf). The moisture regain of the PET fabrics that are treated with lipase improved 3.3 times that of the untreated PET fabric. Calcium chloride did not affect the moisture regain of the treated fabrics but affected their wettability. The surface of the PET fabrics that are treated under optimum conditions and in the presence of calcium chloride showed many cracks and voids, unlike the surface of the untreated PET fabrics.

Research limitations/implications

The lipase treatment did not affect the handle of the PET fabrics in the present paper because the weight loss is very small.

Originality/value

In this paper, the control conditions for the improvement of the hydrophilicity of PET fabrics using the low‐cost commercial lipase are determined. The results of the study could further the environment‐friendly finishing of PET fabrics.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 November 2022

Hyunah Kim

This study examined the wear comfort and thermal insulation properties of Al2O3/graphite particle-imbedded sheath/core and dispersed fabrics via a thermal manikin experiment.

Abstract

Purpose

This study examined the wear comfort and thermal insulation properties of Al2O3/graphite particle-imbedded sheath/core and dispersed fabrics via a thermal manikin experiment.

Design/methodology/approach

Al2O3/graphite sheath/core and dispersed polyethylene terephthalate (PET) yarn (POY 120d/24f) were spun using a pilot melt bi-component conjugated spinning machine, which was texturized as 75d/24f on the belt-type texturing machine. The woven fabric specimens were made using nylon 70d/34f in the warp with three types of weft yarn: Al2O3/graphite sheath/core, dispersed and regular PET yarns. Thermal insulation properties were measured and compared in terms of the heat retention rate (I) by KES-F7 apparatus and the maximum surface temperature by light heat emission equipment, as verified by the emissivity of various fabric specimens by far-infrared ray experiment. In addition, this study examined the thermal insulation (Clo value) characteristics of the clothes made of Al2O3/graphite sheath/core and dispersed fabrics using a thermal manikin apparatus, which were compared with the properties of regular PET clothing.

Findings

The thermal insulation of the dispersed fabric was superior to that of the sheath/core fabric, which was tentatively attributed to the higher emissivity of the dispersed yarn with Al2O3/graphite particles distributed over the whole yarn cross-section than that from the core of the sheath/core yarn. This result for the clothing measured using a thermal manikin was consistent with the higher heat retention rate (I) and the maximum surface temperature of the dispersed fabric than that of the sheath/core fabric. In addition, the thermal insulation of the dispersed and sheath/core fabrics was superior to that of the regular PET fabric, which revealed that the Al2O3/graphite particles imbedded in the dispersed and sheath/core yarns exerted a greater effect on the heat storage and release characteristics compared to that of the TiO2 particles in regular PET yarn. The Clo values of the dispersed and sheath/core fabrics under the light-on condition were much higher than those under the light-off condition, and furthermore, the difference of the Clo value between the sheath/core and regular PET fabrics under light-on condition was approximately 1.7 times greater than that under the light-off condition. These results revealed that the far-infrared rays emitted from the Al2O3/graphite particles imbedded in the sheath/core and dispersed yarns enhance the heat storage and release characteristics from the fabric under the light-on condition, i.e. under the sunlight.

Originality/value

The previously examined thermal wear comfort properties of the various inorganic particle-imbedded fabrics were measured with the fabric state, not clothing, which could not provide objective data related to the actual wearing performance of clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 May 2020

Yinchun Fang, Xinhua Liu and Wenqing Fei

PET fiber is widely used in many fields, such as clothing and decorative materials. However, the high flammability and dripping problem restrict its applications. It is vital for…

Abstract

Purpose

PET fiber is widely used in many fields, such as clothing and decorative materials. However, the high flammability and dripping problem restrict its applications. It is vital for PET fiber to overcome these two main drawbacks for practical applications.

Design/methodology/approach

In this paper nacre-mimetic flame retardant coating of chitosan (CH) and Montmorillonite (MMT) was fabricated on PET fabrics through the layer-by-layer assembly method. The flame retardancy and anti-dripping performance of the treated PET fabric were investigated.

Findings

The results of limiting oxygen index (LOI) value and vertical burning test revealed the anti-dripping performance of PET fabrics which was greatly improved, while the flame retardancy has not been improved. The dripping phenomena was eliminated when the CH/MMT bilayers were over 5 BL. Thermo gravimetric analysis (TGA) results revealed that nacre-mimetic coated CH/MMT bilayers on PET fabrics would promote the char formation both under nitrogen atmosphere and under air atmosphere indicating the obviously condensed phase flame retardant action. scanning electron microscopy (SEM) images of the char residues revealed that coated PET fabrics would promote the formation of char.

Research limitations/implications

However, the char was an unstable char which would further combust to change the thermal degradation and combustion process of PET fabric. Though PET fabric coated by this CH/MMT nacre-mimetic system had no flame retardancy, the anti-dripping performance was greatly improved. This research would provide experimental basis for improving the anti-dripping performance for thermoplastic materials.

Originality/value

This research is the original research for the flame retardant treatment by fabrication nacre-mimetic CH/MMT coating on PET fabric, which has not been reported previously. This research would provide experimental basis for improving the anti-dripping performance for thermoplastic polymer fabrics.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 April 2019

Esin Sarıoğlu

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin…

Abstract

Purpose

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin polyester (v-PET) raw materials from which single jersey knitted fabric samples are manufactured. Meanwhile, numerical optimization method was used in predetermined parameters to determine the optimum r-PET and v-PET blend ratio and yarn manufacturing technology. In the optimization analysis, the average values of the important yarn and fabric properties inspected were taken as a target according to the 50 percent proportion of r-PET and v-PET fiber for both compact and ring yarn manufacturing technology.

Design/methodology/approach

To encourage the use of value-added textile products produced from recycling PET bottle with the focus of social responsibility is a condition that should be evaluated within the scope of waste management. The recycling of PET bottles and finding new opportunities for the uses in different field are crucial for both contributing environmental economy and conserving natural energy resources. The most important alternative ways is to use the r-PET fiber from recycling PET bottle in textile industry. In this study, 19.7 tex r-PET/cotton and v-PET/cotton-blended compact and ring spun yarns were produced at different blending ratios at the same production parameters.

Findings

Results showed that blend type, blend ratio and yarn manufacturing technology have statistical significance effect on bursting strength and air permeability. Besides, it was found that blend type has no significance on wale wise wicking rate unlike other parameters. Optimization analysis indicated that single jersey knitted fabric with v-PET/CO 58.62/41.38 percent compact yarn had higher desirability with the value of 0.72.

Originality/value

At the present time, r-PET fiber is blended in small amount (approximately 5–15 percent blend ratio) with both cotton and polyester together. In addition, it is possible using different fiber blend types instead of cotton and polyester according to the usage area. The most important question is to determine the amount of r-PET proportion. In other words, both optimum yarn/fabric quality parameters should be ensured and at the same time life cycle of the apparels should not be short when the optimum r-PET proportion is taken into consideration.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 January 2006

R. Jeziórska

To convert the post‐production polyethylene terephthalate (PET)‐containing fabrics waste into new value‐added polymeric materials using maleic anhydride grafted linear low‐density…

6936

Abstract

Purpose

To convert the post‐production polyethylene terephthalate (PET)‐containing fabrics waste into new value‐added polymeric materials using maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MAH) for improved toughness and to optimise the results of such a modification.

Design/methodology/approach

For effective toughening, various blends were made of polyamide 6 (PA) and post‐production PET‐containing fabrics waste (PET) by incorporating different concentrations of maleic anhydride grafted, linear low‐density polyethylene (LLDPE‐g‐MAH). The reactions of LLDPE‐g‐MAH with blend components were studied by Fourier transformation infrared spectroscopy, solubility behaviour of the products in formic acid and rheological measurements. Blends investigated were prepared in a co‐rotating twin‐screw extruder and characterised by differential scanning calorimetry and scanning electron microscopy. The static tensile property and impact strength of the blends were also measured.

Findings

The modification of polyamide 6 and post‐production PET‐containing fabrics waste using LLDPE‐g‐MAH showed significant enhancement of impact and interfacial adhesion over the unmodified one. The modification caused a chemical linkage between LLDPE‐g‐MAH and blend components which led not only to forming PA‐co‐LLDPE‐g‐MAH‐coPET copolymers, but also to ensuring the intrinsically strong chemical bonds across LLDPE‐g‐MAH phase/PET phase/PA matrix interface, which was the main cause to the improved impact strength and interface adhesion. The optimum results were obtained at 10 per cent of LLDPE‐g‐MAH.

Research limitations/implications

The post‐production PET‐containing fabrics waste used in the present context was defibrated before processing.

Practical implications

The method developed provided a simple and practical solution to recycling and improving the toughness of post‐production PET‐containing fabrics waste.

Originality/value

The method of recycling post‐production PET‐containing fabrics waste was novel and the new polymeric materials obtained could find numerous applications such as hybrid films, fibres and engineering polymers.

Details

Pigment & Resin Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2021

Naser Gad Al-Balakocy, Talaat Hassan, Safaa Khalil and Sherif Abd El-Salam

This study aims to study the simultaneous treatment of polyethylene terephthalate (PET) fabric with sodium hydroxide (NaOH) and TiO2 nanoparticles (NPs).

Abstract

Purpose

This study aims to study the simultaneous treatment of polyethylene terephthalate (PET) fabric with sodium hydroxide (NaOH) and TiO2 nanoparticles (NPs).

Design/methodology/approach

PET fabrics loaded by TiO2 NPs were investigated by the use of scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Fourier transformed infrared spectroscopy (FT-IR). Factors affecting the finishing process such as NaOH and TiO2 NPs concentrations, finishing duration and temperature were discussed.

Findings

The finished PET fabrics imparted new properties such as antimicrobial and ultraviolet protection factor protection, what is undoubtedly will increase the spread of this type of fabric and its use in new areas.

Research limitations/implications

The method used mainly depends on activating the surface of PET fabrics by a chemical method, specifically NaOH to cause partial decomposition, which may lead to an environmental impact.

Practical implications

The obtained results revealed that the simultaneous treatment of PET fabric with NaOH and TiO2 NPs showed antimicrobial and UV protection properties. They exhibited a strong antimicrobial activity and UV protection efficiency even after five washing cycles, indicating excellent laundering durability.

Originality/value

The approach has simplicity and implementability on an industrial scale without cost investment.

Details

Research Journal of Textile and Apparel, vol. 25 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 December 2001

George Stylios

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within…

1078

Abstract

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within the newer research areas under the microscope of the community involved, technical textiles focuses on new, ‘smart’ garments and the initiatives in this field in both the UK and the international community at large. Covers this subject at length.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 May 2023

Sibel Kaplan and Havva Tokgoz

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper…

Abstract

Purpose

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper layers. The aim of this study is to investigate effects of quilted mattress ticking fabric material (polyester, polypropylene, viscose, lyocell and their blends) on thermal comfort of the bedding system by objective and subjective measurements.

Design/methodology/approach

The permeability (air and water vapour), heat transfer, water absorption, transfer and drying behaviours of knitted quilted fabrics which influence the thermal comfort of the bedding system were investigated. Subjective coolness and dampness evaluations were gathered by forearm and hand-palm tests to provide more realistic discussion in light of fabric characteristics.

Findings

According to the results, polypropylene can be suggested for winter use with its higher air and water vapour permeabilities, lower thermal absorption and conductivities and warmer evaluation results. Lyocell can be suggested for summer use with also high permeabilities, higher thermal absorption and conductivities and cooler evaluation results. Polyester and viscose may also be considered for winter and summer in turn as a result of thermal feelings they create.

Originality/value

In addition to fabric thermal, permeability, liquid absorption and transfer properties, this study also includes subjective coolness and dampness evaluations which can provide realistic results regarding the coolness-to-touch and liquid transfer performances of mattress ticking fabrics. The relationships among objective and subjective data were investigated and the proposed subjective evaluation techniques can be used for different products.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2013

N.M. Bhattad, A.I. Wasif and S.K. Laga

Polyester 3GT polymer provides a unique combination of benefits to a wide variety of applications. This advanced, value added polymer offers a major new mix-enrichment, with the…

Abstract

Polyester 3GT polymer provides a unique combination of benefits to a wide variety of applications. This advanced, value added polymer offers a major new mix-enrichment, with the potential to grow into a significant market over the next ten to twenty years. In the present study, an attempt has been made to explore the possibility of producing fabric made from PET 3GT/viscose which can be a potential substitute for PET/viscose. It is observed that PET 3GT/viscose can be heat set at a low temperature. Most of mechanical properties of PET 3GT/viscose fabric are comparable with those of PET/viscose blended fabrics. PET 3GT/viscose blended fabric has a better hand value than PET/viscose blended fabrics.

Details

Research Journal of Textile and Apparel, vol. 17 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 July 2018

Siamak Nazemi, Ramin Khajavi, Hamidreza Rabie Far, Mohammad Esmail Yazdanshenas and Manouchehr Raad

This paper is based on the simulation of wind tunnel experiment for better understanding and predicting the behavior of PET fabric in the wind tunnel. This software calculates the…

Abstract

Purpose

This paper is based on the simulation of wind tunnel experiment for better understanding and predicting the behavior of PET fabric in the wind tunnel. This software calculates the drag force of fabric, illustrates pressure in the surrounding of airfoil and velocity of wind in the tunnel during different angles of attack (0°, 45° and 90°). The paper aims to discuss these issues.

Design/methodology/approach

The sol-gel method was applied for the synthesis of silica nano particles. So, PET fabric was coated with precursor (Tetra ethyl ortho silicate) solution first and the process continued on PET fabric. The morphology of obtained hydrophobic fabric samples and their surface roughness was observed and determined by atomic microscopes (AFM and SEM). Experimental data were used for simulation and modeling, and then results were interpreted.

Findings

It was concluded that the surface roughness and its amount can play a significant role in the drag reduction of PET fabric, and surface roughness can change the boundary layer from laminar to turbulent.

Originality/value

At 45 degrees angle of attack, larger boundary layer separation results in a large increase in the drag force. This model is useful for predicting flow behavior in the experimental wind tunnel.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 588