Search results

1 – 10 of 184
Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11435

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 November 2018

Yuan Zhang, Stefan Jedeck, Li Yang and Lihui Bai

Despite the widespread expectation that additive manufacturing (AM) will become a disruptive technology to transform the spare parts supply chain, very limited research has been…

863

Abstract

Purpose

Despite the widespread expectation that additive manufacturing (AM) will become a disruptive technology to transform the spare parts supply chain, very limited research has been devoted to the quantitative modeling and analysis on how AM could fulfill the on-demand spare parts supply. On the other hand, the choice of using AM as a spare parts supply strategy over traditional inventory is a rising decision faced by manufacturers and requires quantitative analysis for their AM-or-stock decisions. The purpose of this paper is to develop a quantitative performance model for a generic powder bed fusion AM system in a spare parts supply chain, thus providing insights into this less-explored area in the literature.

Design/methodology/approach

In this study, analysis based on a discrete event simulation was carried out for the use of AM in replacement of traditional warehouse inventory for an on-demand spare parts supply system. Generic powder bed fusion AM system was used in the model, and the same modeling approach could be applied to other types of AM processes. Using this model, the impact of both spare parts demand characteristics (e.g. part size attributes, demand rates) and the AM operations characteristics (e.g. machine size and postpone strategy) on the performance of using AM to supply spare parts was studied.

Findings

The simulation results show that in many cases the AM operation is not as cost competitive compared to the traditional warehouse-based spare parts supply operation, and that the spare parts size characteristics could significantly affect the overall performance of the AM operations. For some scenarios of the arrival process of spare parts demand, the use of the batched AM production could potentially result in significant delay in parts delivery, which necessitates further investigations of production optimization strategies.

Originality/value

The findings demonstrate that the proposed simulation tool can not only provide insights on the performance characteristics of using AM in the spare parts supply chain, especially in comparison to the traditional warehousing system, but also can be used toward decision making for both the AM manufacturers and the spare parts service providers.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 15 February 2022

Md. Hazrat Ali, Gani Issayev, Essam Shehab and Shoaib Sarfraz

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process…

3437

Abstract

Purpose

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process automation and the possibility of saving labor, waste materials, construction time and hazardous procedures for humans. Significant researches were conducted to identify the performance of the materials, while some researches focused on the development of novel techniques and methods, such as building information modeling. This paper aims to provide a detailed overview of the state-of-the-art of currently used 3D printing technologies in the construction areas and global acceptance in its applications.

Design/methodology/approach

The working principle of additive manufacturing in construction engineering (CE) is presented in terms of structural design, materials used and theoretical background of the leading technologies that are used to construct buildings and structures as well as their distinctive features.

Findings

The trends of 3D printing processes in CE are very promising, as well as the development of novel materials, will gain further momentum. The findings also indicate that the digital twin (DT) in construction technology would bring the industry a step forward toward achieving the goal of Industry 5.0.

Originality/value

This review highlights the prospects of digital manufacturing and the DT in construction engineering. It also indicates the future research direction of 3D printing in various constriction sectors.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 October 2020

Aldi Mehmeti, Pavel Penchev, Donal Lynch, Denis Vincent, Nathalie Maillol, Johannes Maurath, Julien Bajolet, David Ian Wimpenny, Khamis Essa and Stefan Dimov

The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based…

241

Abstract

Purpose

The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based powder bed fusion (PBF) process to produce small series of hybrid components. The research investigates systematically the mechanical properties and the performance of the MIM/PBF interfaces in such hybrid components.

Design/methodology/approach

The MIM process is employed to fabricate relatively lower cost preforms in higher quantities, whereas the PBF technology is deployed to build on them sections that can be personalised, customised or functionalised to meet specific technical requirements.

Findings

The results are discussed, and conclusions are made about the mechanical performance of such hybrid components produced in batches and also about the production efficiency of the investigated hybrid manufacturing (HM) route. The obtained results show that the proposed HM route can produce hybrid MIM/PBF components with consistent mechanical properties and interface performance which comply with the American Society for Testing and Materials (ASTM) standards.

Originality/value

The manufacturing of hybrid components, especially by combining the capabilities of additive manufacturing processes with cost-effective complementary technologies, is designed to be exploited by industry because they can offer flexibility and cost advantages in producing small series of customisable products. The findings of this research will contribute to further develop the state of the art in regards to the manufacturing and optimisation of hybrid components.

Article
Publication date: 2 February 2023

Mahyar Khorasani, Ian Gibson, Amir Hossein Ghasemi, Elahe Hadavi and Bernard Rolfe

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing…

1090

Abstract

Purpose

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed.

Design methodology approach

Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes.

Findings

The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants.

Originality value

This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authors’ knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 November 2020

Abid Ullah, HengAn Wu, Asif Ur Rehman, YinBo Zhu, Tingting Liu and Kai Zhang

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the…

Abstract

Purpose

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed.

Design/methodology/approach

Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment.

Findings

Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens.

Originality/value

TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6595

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

466

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 18 February 2019

Tuomas Riipinen, Sini Metsä-Kortelainen, Tomi Lindroos, Janne Sami Keränen, Aino Manninen and Jenni Pippuri-Mäkeläinen

The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).

4267

Abstract

Purpose

The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).

Design/methodology/approach

Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for material characterization. The L-PBF process parameters were optimized for the material, using a design of experiments approach. The printed samples were exposed to different heat treatment cycles to improve the magnetic properties. The magnetic properties were measured with quasi-static direct current and alternating current measurements at different frequencies and magnetic flux densities. The mechanical properties were characterized with tensile tests. Electrical resistivity of the material was measured.

Findings

The optimized L-PBF process parameters resulted in very low porosity. The magnetic properties improved greatly after the heat treatments because of changes in microstructure. Based on the quasi-static DC measurement results, one of the heat treatment cycles led to magnetic saturation, permeability and coercivity values comparable to a commercial Fe-Co-V alloy. The other heat treatments resulted in abnormal grain growth and poor magnetic performance. The AC measurement results showed that the magnetic losses were relatively high in the samples owing to formation of eddy currents.

Research limitations/implications

The influence of L-PBF process parameters on the microstructure was not investigated; hence, understanding the relationship between process parameters, heat treatments and magnetic properties would require more research.

Originality/value

The relationship between microstructure, chemical composition, heat treatments, resistivity and magnetic/mechanical properties of L-PBF processed Fe-Co-V alloy has not been reported previously.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 July 2021

Manoj Kumar, Gregory J. Gibbons, Amitabha Das, Indranil Manna, David Tanner and Hiren R. Kotadia

The purpose of this study is to investigate the microstructural evolution of high-strength 2024 Al alloy prepared by the laser powder bed fusion (L-PBF) additive manufacturing…

Abstract

Purpose

The purpose of this study is to investigate the microstructural evolution of high-strength 2024 Al alloy prepared by the laser powder bed fusion (L-PBF) additive manufacturing (AM) route. The high-strength wrought Al alloy has typically been unsuitable for AM due to its particular solidification characteristics such as hot cracking, porosity and columnar grain growth.

Design/methodology/approach

In this research work, samples were fabricated using L-PBF under various laser energy densities by varying laser power and scan speed. The microstructural features that developed during the solidification are correlated with operating laser parameters. In addition, finite element modelling (FEM) was performed to understand the experimentally observed results.

Findings

Microstructure evolution and defect formation have been assessed, quantified and correlated with operating laser parameters. Thermal behaviour of samples was predicted using FEM to support experimental observations. An optimised combination of intermediate laser power and scan speed produced the least defects. Higher energy density increased hot tearing along the columnar grain boundaries, while lower energy density promoted void formation. From the quantitative results, it is evident that with increasing energy density, both the top surface and side wall roughness initially reduced till a minimum and then increased. Hardness and compressive strength were found to decrease with increasing power density due to stress relaxation from hot tearing.

Originality/value

This research work examined how L-PBF processing conditions influence the microstructure, defects, surface roughness and mechanical properties. The results indicates that complete elimination of solidification cracks can be only achieved by combining process optimisation and possible grain refining strategies.

1 – 10 of 184