Search results

1 – 10 of 19
Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 1 March 2024

Kavita Kanyan and Shveta Singh

This study aims to examine the impact and contribution of priority and non-priority sectors, as well as their sub-sectors, on the gross non-performing assets of public, private…

Abstract

Purpose

This study aims to examine the impact and contribution of priority and non-priority sectors, as well as their sub-sectors, on the gross non-performing assets of public, private and foreign sector banks.

Design/methodology/approach

The Reserve Bank of India's database on the Indian economy is used to retrieve data over 13 years (2008–2021). Public sector (12), private sector (22) and foreign sector (44) banks are represented in the sample. Two-way ANOVA, multiple regression and panel regression statistical techniques are used in SPSS and EViews to examine the data. Further, the results are also validated by using robustness testing by applying the fully modified ordinary least square (FMOLS) and dynamic least square (DOLS) regression.

Findings

The results showed that, for private and foreign banks, the non-priority sector makes up the majority of the total gross non-performing assets, although both the priority and non-priority sectors are substantial for public sector banks. The largest contributors to the total gross non-performing assets in public, private and foreign banks are industries, agriculture and micro and small businesses. The FMOLS displays robustness results that are qualitatively similar to the baseline result.

Practical implications

Based on the study's findings about the patterns of non-performing assets originating from these specific industries, banks might improve the way in which these advanced loans are managed.

Originality/value

There has not been much research done on the subject of sub-sector-specific non-performing assets and how they affect total gross non-performing assets across the three sector banks. The study's primary focus will be on the issue of non-performing assets in the priority’s and non-priority’s sub-sectors, namely, agricultural, micro and small businesses, food credit, industries, services, retail loans and other priority and non-priority sectors.

Details

Vilakshan - XIMB Journal of Management, vol. 21 no. 1
Type: Research Article
ISSN: 0973-1954

Keywords

Open Access
Article
Publication date: 18 December 2023

Orlando Troisi, Anna Visvizi and Mara Grimaldi

Industry 4.0 defines the application of digital technologies on business infrastructure and processes. With the increasing need to take into account the social and environmental…

1218

Abstract

Purpose

Industry 4.0 defines the application of digital technologies on business infrastructure and processes. With the increasing need to take into account the social and environmental impact of technologies, the concept of Society 5.0 has been proposed to restore the centrality of humans in the proper utilization of technology for the exploitation of innovation opportunities. Despite the identification of humans, resilience and sustainability as the key dimensions of Society 5.0, the definition of the key factors that can enable Innovation in the light of 5.0 principles has not been yet assessed.

Design/methodology/approach

An SLR, followed by a content analysis of results and a clustering of the main topics, is performed to (1) identify the key domains and dimensions of the Industry 5.0 paradigm; (2) understand their impact on Innovation 5.0; (3) discuss and reflect on the resulting implications for research, managerial practices and the policy-making process.

Findings

The findings allow the elaboration of a multileveled framework to redefine Innovation through the 5.0 paradigm by advancing the need to integrate ICT and technology (Industry 5.0) with the human-centric, social and knowledge-based dimensions (Society 5.0).

Originality/value

The study detects guidelines for managers, entrepreneurs and policy-makers in the adoption of effective strategies to promote human resources and knowledge management for the attainment of multiple innovation outcomes (from technological to data-driven and societal innovation).

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 April 2023

Xingchen Zhou, Pei-Luen Patrick Rau and Zhuoni Jie

This study aims to reveal how mobile app stickiness is formed and how the stickiness formation process differs for apps of different social levels.

Abstract

Purpose

This study aims to reveal how mobile app stickiness is formed and how the stickiness formation process differs for apps of different social levels.

Design/methodology/approach

This study proposed and validated a stickiness formation model following the cognitive–affective–conative framework. Data were collected from surveys of 1,240 mobile app users and analyzed using structural equation modeling. Multigroup analysis was applied to contrast the stickiness formation process among apps of different social levels.

Findings

This study revealed a causal link between cognitive, affective and conative factors. It found partial mediation effects of trust in the association between perceptions and satisfaction, and the full mediation role of satisfaction and personal investment (PI) in the effects of subjective norm (SN) on stickiness. The multigroup analysis results suggested that social media affordances benefit stickiness through increased PI and strengthened effects of SN on PI. However, it damages stickiness through increased perceived privacy risk (PPR), decreased trust and strengthened effects of PPR on trust.

Originality/value

This study contributes to both stickiness scholars and practitioners, as it builds a model to understand the stickiness formation process and reveals the effects of the “go social” strategy. The novelty of this study is that it examined social influences, considered privacy issues and revealed two mediation mechanisms. The findings can guide the improvement of mobile app stickiness and the application of the “go social” strategy.

Details

Information Technology & People, vol. 37 no. 3
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 15 November 2022

Kritcha Yawised, Darlin Apasrawirote, Maneerut Chatrangsan and Paisarn Muneesawang

The purpose of this study is to conduct a systematic literature review of the adoption of immersive marketing technology (IMT) in terms of strategic planning of its adoption…

Abstract

Purpose

The purpose of this study is to conduct a systematic literature review of the adoption of immersive marketing technology (IMT) in terms of strategic planning of its adoption, resource requirements and its implications and challenges.

Design/methodology/approach

This study categorizes and contextualizes qualitative approaches to evaluate the literature, with Scopus databases serving as the primary source of 90 selected articles in the areas of information technology, business and marketing strands. Theme analysis was carried out using thematic techniques and grounded approach principles to facilitate thematic coding and generate theme analysis.

Findings

The analysis was supported by the three concepts of business flexibility, agility and adaptability, which were drawn as a strategy for IMT adoption. The findings presented three main themes: proactive flexibility, responsive agility and reactive adaptability that enable business owner–managers to craft a strategy for IMT adoption.

Originality/value

The novel contribution of this study is the inclusion of key implications related to IMT as a starting point of the next level of innovative marketing for all academics, practitioners and business owner–managers.

Details

Journal of Entrepreneurship in Emerging Economies, vol. 16 no. 3
Type: Research Article
ISSN: 2053-4604

Keywords

Article
Publication date: 15 July 2022

Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Abstract

Purpose

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Design/methodology/approach

The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.

Findings

The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.

Originality/value

Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 19