Search results

1 – 7 of 7
Article
Publication date: 1 February 1999

R. Hariharaputhran, A. Subramanian, Alice Arul Antony, P. Manisankar, T. Vasudevan and S. Venkatakrishna Iyer

A few nitrones such as N‐benzilidene aniline‐N‐oxide, N‐(O‐hydroxy benzilidene) aniline‐N‐oxide (HN) and N‐(α‐naphthylidene) aniline‐N‐oxide (NN) have been synthesised and…

266

Abstract

A few nitrones such as N‐benzilidene aniline‐N‐oxide, N‐(O‐hydroxy benzilidene) aniline‐N‐oxide (HN) and N‐(α‐naphthylidene) aniline‐N‐oxide (NN) have been synthesised and investigated for evaluating their efficiency as inhibitors for the corrosion of mild steel in 1M HCl at different concentrations of nitrones ranging from 0.025‐1.0mM and at different temperatures ranging from 30‐70°C. Among these compounds NN gives the best performance even at higher temperatures. Potentiodynamic polarisation studies reveal the fact that all compounds behave as mixed type inhibitors. Hydrogen permeation studies reveal the fact that all the compounds bring down the permeation current. The absorption of these compounds on the mild steel surface from 1M HCl obeys Temkin’s absorption isotherm.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 October 2014

V. Rajasekharan and P. Manisankar

The purpose of this study is to introduce mechanochemically prepared polyaniline anticorrosive additives. In primer coating technology, there is an increasing interest in…

Abstract

Purpose

The purpose of this study is to introduce mechanochemically prepared polyaniline anticorrosive additives. In primer coating technology, there is an increasing interest in the development of efficient anticorrosive additives which replace the conventional inorganic anticorrosive pigments like heavy metal chromates and phosphates normally added to primer paints for the coating on metals. Conducting polymers are found to be better alternatives.

Design/methodology/approach

Polyaniline phosphate is synthesized through solid-state conditions without using any solvent. The synthesized polyaniline phosphate is added in the primer formulation instead of zinc phosphate. Primers with different quantity of zinc phosphate are also formulated and studied for comparison. The comparison between their abilities to control corrosion of carbon steel were done with application of open-circuit potential monitoring, polarization and electrochemical impedance spectroscopy methods in 3.5 per cent NaCl solution.

Findings

Corrosion studies indicate that polyaniline phosphate can improve corrosion protection properties by taking part the passivation processes. The performance of polyaniline phosphate is better than zinc phosphate.

Originality/value

I certify that the results are from our original research and this paper is neither considered for publication elsewhere nor published previously.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2002

R. Manickavasagam, K. Jeya Karthik, M. Paramasivam and S. Venkatakrishna Iyer

Poly(styrenesulphonic acid)‐doped polyaniline has been synthesised and the influence of this polymeric compound on the inhibition of corrosion of mild steel in 1M HCl has…

1042

Abstract

Poly(styrenesulphonic acid)‐doped polyaniline has been synthesised and the influence of this polymeric compound on the inhibition of corrosion of mild steel in 1M HCl has been investigated using weight loss measurements, galvanostatic polarisation studies, electropermeation studies and a.c. impedance measurements. The polymer acts predominantly as an anodic inhibitor. Hydrogen permeation studies and a.c. impedance measurements clearly indicate a very effective performance of the compound as a corrosion inhibitor. The adsorption of the compound on the mild steel surface obeys Temkin's adsorption isotherm.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 April 2005

S. Rajendran, S.P. Sridevi, N. Anthony, A. John Amalraj and M. Sundaravadivelu

To evaluate the inhibition efficiency (IE) of polyvinyl alcohol (PVA) in controlling the corrosion of carbon steel immersed in neutral aqueous solutions containing 60 ppm…

1016

Abstract

Purpose

To evaluate the inhibition efficiency (IE) of polyvinyl alcohol (PVA) in controlling the corrosion of carbon steel immersed in neutral aqueous solutions containing 60 ppm of Cl, in the absence and presence of Zn2+. To investigate the influence of sodium sulphite (Na2SO3), sodium dodecyl sulphate (SDS), pH and duration of immersion on the IE of PVA‐Zn2+ system. To analyse the protective film formed on the metal surface.

Design/methodology/approach

The IE has been evaluated by weight loss method. The protective film was analysed by FTIR and fluorescence spectra.

Findings

A formulation consisting of 100 ppm of PVA and 75 ppm of Zn2+ offered 81 per cent IE to carbon steel immersed in a solution containing 60 ppm of Cl. A synergistic effect on inhibition of a combination of PVA and Zn2+ was observed during the tests. The protective film consisted of the Fe2+‐PVA complex and Zn(OH)2. It was found to be UV‐fluorescent. When SDS was added to the PVA‐Zn2+ system, the mixture showed maximum IE at the critical micelle concentration (200 ppm) of SDS (an anionic surfactant). The oxygen‐scavenging effect of Na2SO3 increased as the concentration of Na2SO3 was increased. At lower concentrations of Na2SO3, the transport of the inhibitors played a more major role than did the removal of dissolved oxygen. As the pH value was increased, the IE of the PVA‐Zn2+ system decreased. As the duration of immersion was increased, the IE was observed to decrease.

Research limitations/implications

Electrochemical studies such as polarization and AC impedance spectra will enlighten more on the mechanistic aspects of corrosion inhibition.

Practical implications

If this study is carried out at high temperature under simulated conditions, the findings may find applications in cooling water systems.

Originality/value

The role of transport of inhibitors towards the metal surface from the bulk of the solution, formation of micelles by surfactants, removal of dissolved oxygen by oxygen scavenger, competition between formation of insoluble iron‐inhibitor complex on metal surface and formation of soluble iron chloride in influencing the inhibitive property has been investigated. The protective film was analysed by FTIR spectra and fluorescence spectra.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1999

Susai Rajendran, B.V. Apparao and N. Palaniswamy

The formulation consisting of 50ppm polyacrylamide (PAA), 300ppm phenyl phosphonic acid (PPA) and 50ppm Zn2+ has 95 per cent inhibition efficiency in controlling corrosion…

490

Abstract

The formulation consisting of 50ppm polyacrylamide (PAA), 300ppm phenyl phosphonic acid (PPA) and 50ppm Zn2+ has 95 per cent inhibition efficiency in controlling corrosion of mild steel in a neutral aqueous environment, containing 60ppm Cl, a situation commonly encountered in cooling water systems. A discussion of mechanistic aspects of corrosion inhibition is based on the results obtained from a potentiostatic polarization study, UV‐visible, FTIR and luminescence spectra. The protective film is found to be luminescent and to consist of Fe2+‐PAA complex, Fe2+‐PPA complex and Zn(OH)2.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2005

S.U. Rahman, M.T. Saeed and Sk.A. Ali

To demonstrate corrosion inhibition capabilities of new cyclic nitrones, containing hydrophobic substituents.

Abstract

Purpose

To demonstrate corrosion inhibition capabilities of new cyclic nitrones, containing hydrophobic substituents.

Design/methodology/approach

A number of new cyclic nitrones were synthesized. Corrosion inhibition efficiencies of these organic inhibitors were determined by gravimetric and electrochemical methods, using carbon steel as the substrate metal and 1 M HCl at 60°C as the corrosive environment. Concentration of inhibitor was varied between 50 and 400 ppm.

Findings

All compounds exhibited excellent corrosion efficiencies that ranged between 90.0 and 98.3 percent in 1 M HCl at 60°C. Tafel tests corroborated these results.

Research limitations/implications

The inhibitors were tested in acidic medium. It is unknown how these inhibitors will function in the presence of other ions that are typically present in natural corrosive environment.

Originality/value

All organic compounds presented in this work are new and this is the first time their corrosion inhibition characteristics have been evaluated.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 October 2021

Mulayam Singh Gaur, Rajni Yadav, Mamta Kushwah and Anna Nikolaevna Berlina

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and…

85

Abstract

Purpose

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity.

Design/methodology/approach

Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples.

Findings

This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples.

Originality/value

This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 7 of 7