Search results

1 – 10 of over 290000
Article
Publication date: 3 October 2016

Michal Sobolewski, Norbert Grzesik, Zbigniew Koruba and Michal Nowicki

Nowadays, various methods of observation from unmanned aerial vehicles (UAV) are being widely developed. There are many ways of increasing the amount of information retrieved from…

Abstract

Purpose

Nowadays, various methods of observation from unmanned aerial vehicles (UAV) are being widely developed. There are many ways of increasing the amount of information retrieved from captured material. Unfortunately, hardware solutions consume a lot of energy, which is unacceptable in UAV applications, as it can have direct impact on the observing time on UAV. Those kinds of problems have been identified during the development phase of stabilizing platform in Polish Research Space Centre in Warsaw. As a result of that fact, energy saving control methods have been implemented, which estimates quality of stabilization process for the observation-tracking device (OTD).

Design/methodology/approach

Mathematical model has been designed and validated with real-life experiments for the purpose of optimization of stabilization and control process. Two types of controlling algorithms have been implemented: linear quadratic regulator and proportional derivative method for driving the mechanism. Based on numerical simulations of the mechanical model being controlled by the mentioned driver, it was possible to define membership functions. After the process of defuzzification, the controller predicts quality of stabilization under defined environmental working conditions.

Findings

An autonomous energy saving system has been created that can be implemented in many applications, where environmental conditions may change significantly.

Practical implications

To test the proposed fuzzy controller, OTD has been chosen as an example object of application. It is a mechanical platform which houses the optical observation system. It is designed to provide the best working conditions during flight.

Originality/value

That kind of decision-making unit has never been implemented before during observations which were carried out during flying of an object. That innovative controller should bring significant energy consumption savings.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 April 2024

Øystein Pedersen Dahlen

The main aim of this article is to broaden the notion of strategic intent in public relations. It also develops an understanding of the social value of what can be defined as the…

Abstract

Purpose

The main aim of this article is to broaden the notion of strategic intent in public relations. It also develops an understanding of the social value of what can be defined as the first modern health communication campaign in Europe based on strategic intents and the development of modernity.

Design/methodology/approach

The study is based on both historical research and empirical material from the Norwegian tuberculosis campaign from 1889 up to 1913, when Norwegian women achieved suffrage. The campaign is analysed in the framework of modernity and social theory. The literature on lobbying and social movements is also used to develop a theoretical framework for the notion of strategic intent.

Findings

The study shows that strategic intent can be divided into two layers: (1) the implicit strategic intent is the real purpose behind the communication efforts, whereas (2) the explicit intent is found directly in the communication efforts. The explicit intent may be presented as a solution for the good of society at the right political moment, giving an organisation the possibility to mobilise for long-term social changes, in which could be the implicit intent.

Originality/value

The distinction between explicit and implicit strategic intent broadens our understanding on how to make long-term social changes as well as how social and political changes occur in modern societies. The article also gives a historical account of what is here defined as the first modern health communication campaign in Europe and its social value.

Details

Corporate Communications: An International Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1356-3289

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 13 March 2024

Nan Chen, Jianfeng Cai, Devika Kannan and Kannan Govindan

The rapid development of the Internet has led to an increasingly significant role for E-commerce business. This study examines how the green supply chain (GSC) operates on the…

Abstract

Purpose

The rapid development of the Internet has led to an increasingly significant role for E-commerce business. This study examines how the green supply chain (GSC) operates on the E-commerce online channel (resell mode and agency mode) and the traditional offline channel with information sharing under demand uncertainty.

Design/methodology/approach

This study builds a multistage game model that considers the manufacturer selling green products through different channels. On the traditional offline channel, the competing retailers decide whether to share demand signals. Regarding the resale mode of E-commerce online channel, just E-tailer 1 determines whether to share information and decides the retail price. In the agency mode, the manufacturer decides the retail price directly, and E-tailer 2 sets the platform rate.

Findings

This study reveals that information accuracy is conducive to information value and profits on both channels. Interestingly, the platform fee rate in agency mode will inhibit the effect of a positive demand signal. Information sharing will cause double marginal effects, and price competition behavior will mitigate such effects. Additionally, when the platform fee rate is low, the manufacturer will select the E-commerce online channel for operation, but the retailers' profit is the highest in the traditional channel.

Originality/value

This research explores the interplay between different channel structures and information sharing in a GSC, considering price competition and demand uncertainty. Besides, we also considered what behaviors and factors will amplify or transfer the effect of double marginalization.

Details

Industrial Management & Data Systems, vol. 124 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 14 March 2024

Bilge Nur Öztürk

The psychological foundations of consumers’ reasons for product choices are analyzed in the field of marketing. The purpose of this research is to identify the implicit reasons…

Abstract

Purpose

The psychological foundations of consumers’ reasons for product choices are analyzed in the field of marketing. The purpose of this research is to identify the implicit reasons for white meat consumption in the UK and Turkey.

Design/methodology/approach

In the scope of the means-end chain theory, in-depth interviews were conducted with individuals, and the reasons for consumers’ product preferences were revealed by moving from concrete to abstract.

Findings

It has been determined that the white meat consumption of Muslims in the UK is primarily shaped by their religious approach. In Turkey, on the contrary, both consumption patterns and reasons for preference are changing. It has been found that white meat consumption is associated with values such as security needs, satisfaction with life, self-fulfillment and happiness.

Research limitations/implications

This research has contributed to the marketing literature by examining consumers’ implicit consumption reasons for white meat in the context of religion and culture.

Practical implications

Marketing strategies should focus on building trust in halal certification, particularly in the UK. Brands should associate their promotion strategies with feelings of security and happiness, which are associated in the minds of consumers.

Originality/value

This study is a new study in terms of revealing the connotations of consumers about consuming chicken and fish and showing the implicit needs that the brands can emotionally associate with.

Details

Journal of Islamic Marketing, vol. 15 no. 5
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 March 2024

Heji Zhang, Dezhao Lu, Wei Pan, Xing Rong and Yongtao Zhang

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping…

Abstract

Purpose

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping characteristics, and provides certain beneficial guidance for the design of large-span closed hydrostatic guideway on the basis of providing a large vertical load bearing capacity.

Design/methodology/approach

The Reynolds’ equation and flow continuity equation are solved simultaneously by the finite difference method, and the perturbation method and the finite disturbance method is used for calculating the dynamic characteristics. The static and dynamic characteristics, including recess pressure, flow of lubricating oil, carrying capacity, pitch moment, yaw moment, dynamic stiffness and damping, are comprehensively analyzed.

Findings

The designed closed hydrostatic guideway has the ability to resist large lateral load, pitch moment and yaw moment and has good stiffness and damping characteristics, on the basis of being able to provide large vertical carrying capacity, which can meet the application requirements of heavy two-plate injection molding machine (TPIMM).

Originality/value

This paper researches static and dynamic characteristics of a large-span six-slider closed hydrostatic guideway used in heavy TPIMM, emphatically considering pitch moment and yaw moment. Some useful guidance is given for the design of large-span closed hydrostatic guideway.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 23 February 2024

Bonha Koo and Ryumi Kim

Using the next-day and next-week returns of stocks in the Korean market, we examine the association of option volume ratios – i.e. the option-to-stock (O/S) ratio, which is the…

Abstract

Using the next-day and next-week returns of stocks in the Korean market, we examine the association of option volume ratios – i.e. the option-to-stock (O/S) ratio, which is the total volume of put options and call options scaled by total underlying equity volume, and the put-call (P/C) ratio, which is the put volume scaled by total put and call volume – with future returns. We find that O/S ratios are positively related to future returns, but P/C ratios have no significant association with returns. We calculate individual, institutional, and foreign investors’ option ratios to determine which ratios are significantly related to future returns and find that, for all investors, higher O/S ratios predict higher future returns. The predictability of P/C depends on the investors: institutional and individual investors’ P/C ratios are not related to returns, but foreign P/C predicts negative next-day returns. For net-buying O/S ratios, institutional net-buying put-to-stock ratios consistently predict negative future returns. Institutions’ buying and selling put ratios also predict returns. In short, institutional put-to-share ratios predict future returns when we use various option ratios, but individual option ratios do not.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 32 no. 1
Type: Research Article
ISSN: 1229-988X

Keywords

Article
Publication date: 13 February 2024

Muhammad Nabeel Siddiqui, Xiaolu Zhu, Hanad Rasool, Muhammad Bilal Afzal and Nigar Ahmed

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to…

Abstract

Purpose

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to achieve trajectory tracking of quadrotor in the Cartesian plane.

Design/methodology/approach

To achieve trajectory tracking control, firstly the decoupled rotational and translational model of quadrotor are modified by introducing backstepped state-space variables. In the second step, robust integral sliding mode control is designed based on the proportional-integral-derivative (PID) technique. In the third step, a DO is constructed. In next step, the measurable outputs, i.e. rotational and translational state variables, are used to design the LPO. Finally, in the control algorithm all state variables and its rates are replaced with its estimates obtained using the state-observer.

Findings

The finding includes output-feedback control (OFC) algorithm designed by using a LPO. A modified backstepping model for rotational and rotational systems is developed prior to the design of integral sliding mode control based on PID technique. Unlike traditional high-gain observers (HGO), this paper used the LPO for state estimation of quadrotor systems to solve the problem of peaking phenomenon in HGO. Furthermore, a nonlinear DO is designed such that it attenuates disturbance with unknown magnitude and frequency. Moreover, a chattering reduction criterion has been introduced to solve the inherited chattering issue of controllers based on sliding mode technique.

Practical implications

This paper presents input and output data-driven model-free control algorithm. That is, only input and output of the quadrotor model are required to achieve the trajectory tracking control. Therefore, for practical implementation, the number of on-board sensor is reduced.

Originality/value

Although extensive research has been done for designing OFC algorithms for quadrotor, LPO has never been implemented for the rotational and translational state estimations of quadrotor. Furthermore, the mathematical model of rotational and translational systems is modified by using backstepped variables followed by the controller designed using PID and integral sliding mode control technique. Moreover, a DO is developed for attenuation of disturbance with unknown bound, magnitude and frequency.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 290000