Search results

1 – 10 of 192
Article
Publication date: 12 March 2024

Laharish Guntuka, Prabhjot S. Mukandwal, Emel Aktas and Vamsi Sai Krishna Paluvadi

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that…

Abstract

Purpose

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that achieving carbon neutrality alone is not enough to address climate change effectively, as non-CO2 greenhouse gases (GHG) are potent contributors to global warming.

Design/methodology/approach

We used multiple databases, including EBSCO, ProQuest, Science Direct, Emerald and Google Scholar, to identify articles related to climate neutrality in the context of non-CO2 gases. A total of 71 articles in environmental science, climate change, energy systems, agriculture and logistics are reviewed to provide insights into the climate neutrality of supply chains.

Findings

We find that, in addition to CO2, other GHG such as methane, nitrous oxide, ozone and fluorinated gases also significantly contribute to climate change. Our literature review identified several key pillars for achieving net-zero GHG emissions, including end-use efficiency and electrification, clean electricity supply, clean fuel supply, “GHG capture, storage and utilization,” enhanced land sinks, reduced non-CO2 emissions and improved feed and manure management.

Originality/value

We contribute to the literature on climate neutrality of supply chains by emphasizing the significance of non-CO2 GHG along with CO2 and highlighting the need for a comprehensive approach to climate neutrality in addressing climate change. This study advances the understanding of climate neutrality of supply chains and contributes to the discourse on effective climate change mitigation strategies. It provides clear future research directions.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 25 March 2024

Purva Mhatre-Shah, Vidyadhar Gedam and Seema Unnikrishnan

The aim of this study is to understand the environmental benefits and economic savings associated with adoption of circular economy in the construction sector. The research…

Abstract

Purpose

The aim of this study is to understand the environmental benefits and economic savings associated with adoption of circular economy in the construction sector. The research findings will support different stakeholders and decision makers to develop business models based on responsible consumption of resources and build sustainable business models.

Design/methodology/approach

The research uses mixed methodology wherein inventory for life cycle assessment and life cycle costing for environmental and economic impacts is based on primary data using on-site visits for qualitative and quantitative data.

Findings

Different types of land transportation infrastructures are compared for their environmental impacts. It is found that bridges have the highest environmental impacts as compared to tunnels, roads and railways. Further, the results affirm the environmental and economic benefits of adopting circular economy practices.

Originality/value

This is one of a kind research that compares the environmental and economic tradeoffs of adopting circular economy in different types of land transportation infrastructures.

Details

Journal of Indian Business Research, vol. 16 no. 1
Type: Research Article
ISSN: 1755-4195

Keywords

Book part
Publication date: 19 March 2024

Kevin M. Esterling and Cesunica E. Ivey

In this chapter, the authors envision a new framework for technology-enabled local engagement. This framework would exploit web-based collaboration technology in order to create…

Abstract

In this chapter, the authors envision a new framework for technology-enabled local engagement. This framework would exploit web-based collaboration technology in order to create local engagement panels that represent a cross section of ordinary residents. For concreteness, the authors illustrate the framework in a proposed study called “Clearing the Air” would enable residents in the areas of Southern California that are most impacted by the logistics industry to have substantive and constructive opportunities to engage local officials on the complex economic and environmental matters related to logistics and emissions in the Southern California region. The authors propose methods to evaluate best practices in the use of collaboration technology, in particular, to learn whether the technology enables and empowers the engagement panels to participate in air quality governance at a high level and helps local officials better understand the considered opinions of residents on these important matters. If successful, this framework would integrate the policy views of individual residents alongside those of organized stakeholders, experts, and agency officials in the policy process.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Article
Publication date: 1 August 2022

Toshit Jain, Jinesh Kumar Jain, Rajeev Agrawal and Shubha Johri

Environmental impact and changes are becoming essential in textile and yarn industries, where reliable measurement of parameters related to processing harmful substances needs to…

Abstract

Purpose

Environmental impact and changes are becoming essential in textile and yarn industries, where reliable measurement of parameters related to processing harmful substances needs to be examined. Such findings can be cumulated using smart assessment like life cycle analysis. The ecological impact category, supply chain, and climate-changing factors were considered for the necessary assessment.

Design/methodology/approach

This paper applies the Life Cycle Assessment technique in the textile and yarn industry to estimate critical environmental potentials. The critical input for the fabric and yarn industry was put in the GaBi software model to estimate various environmental potentials.

Findings

Global warming potential, electricity, and raw cotton consumption in the fabric and yarn industry were critical concerns where attention should be focused on minimizing environmental potentials from cradle to gate assessment.

Research limitations/implications

This qualitative study is made via the industry case-wise inputs and outputs, which can vary with demographic conditions. Some machine and human constraints have not been implemented in modelling life cycle model for smart simulation. Smart simulation helps in linking different parameters and simulates their combined effects on the product life cycle.

Practical implications

This modelling approach will help access pollution constituents in different supply chain production processes and optimize them simultaneously.

Originality/value

The raw data used in this analysis are collected from an Indian small scale textile industry. In the textile fabrication industry, earlier assessments were carried out in cotton generation, impact of PET, cradle to grave assessment of textile products and garment processing only. In this research the smart model is drawn to consider each input parameter of yarn and textile fabric to determine the criticality of each input in this assessment. This article mainly talks about life cycle and circular supply assessment applied to first time for both cotton to yarn processing and yarn to fabric industry for necessary estimation of environment potentials.

Details

Management of Environmental Quality: An International Journal, vol. 34 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Book part
Publication date: 28 September 2023

Medha Gupta, Anmol Sharma, Kiran Sood and Simon Grima

Air pollution is the combination of fine particles and gases in the atmosphere that harm humans and animals. Our objective is to find the various air pollution contaminants and…

Abstract

Air pollution is the combination of fine particles and gases in the atmosphere that harm humans and animals. Our objective is to find the various air pollution contaminants and its repercussion on Homo sapiens’ health. We discuss how air quality is measured with the air quality index and measures that help us cope with the consequences of air pollution. To carry out this study, we carried out a systematic literature review to uncover the different dimensions of air pollution and mitigation strategies. From the existing literature and observations of the different data sets, we can conclude that air pollutants have a severe impact on the life of Homo sapiens, causing various diseases such as respiratory issues, skin diseases, etc. Today, we have ample laws, but the need of the hour is to initiate new policies to change the behavioural of Homo sapiens. Our findings will help in decision-making by stakeholders such as policy-makers, manufacturing industries, households, etc. This article will also help in highlighting the need for Homo sapiens behavioural change.

Details

Digital Transformation, Strategic Resilience, Cyber Security and Risk Management
Type: Book
ISBN: 978-1-80455-262-9

Keywords

Open Access
Article
Publication date: 15 December 2023

Francis Olawale Abulude, Domenico Suriano, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Ifeoluwa Ayodeji Abulude and Emmanuel Awogbindin

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as…

Abstract

Purpose

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as particulate matter (PM) (PM1, PM2.5 and PM10) in Akure, Nigeria, as well as the relationship between the parameters’ concentrations.

Design/methodology/approach

The evaluation, which lasted four months, used a low-cost air sensor that was positioned two meters above the ground. All sensor procedures were correctly carried out.

Findings

CO2 (430.34 ppm), NO2 (93.31 ppb), O3 (19.94 ppb), SO2 (40.87 ppb), PM1 (29.31 µg/m3), PM2.5 (43.56 µg/m3), PM10 (50.70 µg/m3), temperature (32.4°C) and relative humidity (50.53%) were the average values obtained. The Pearson correlation depicted the relationships between the pollutants and weather factors. With the exception of April, which had significant SO2 (18%) and low PM10 (49%) contributions, NO2 and PM10 were the most common pollutants in all of the months. The mean air quality index (AQI) for NO2 indicated that the AQI was “moderate” (51–100). In contrast to SO2, whose AQI ranged from “moderate” to “very unhealthy,” O3's AQI ranged from “good” (50) to “unhealthy” (151–200). Since PM1, PM2.5 and PM10 made up the majority of PC1’s contribution, both PM2.5 and PM10 were deemed “hazardous.”

Practical implications

The practical implication of indoor air pollution is long-term health effects, including heart disease, lung cancer and respiratory diseases such as emphysema. Indoor air pollution can also cause long-term damage to people’s nerves, brain, kidneys, liver and other organs.

Originality/value

Lack of literature in terms of indoor air quality (IAQ) in Akure, Ondo State. With this work, the information obtained will assist all stakeholders in policy formulation and implementation. Again, the low-cost sensor used is new to this part of the world.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 20 December 2023

Kailash Choudhary, Narpat Ram Sangwa and Kuldip Singh Sangwan

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the…

Abstract

Purpose

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the possibility of carbon sequestration through Bamboo cultivation in India.

Design/methodology/approach

The study has followed a standard life cycle assessment (LCA) framework based on ISO 14040 guidelines. Three distinct phases have been compared on midpoint and endpoint assessment categories – raw material, polishing and disposal. Primary data has been collected from the construction site in India, and secondary data has been collected from the Ecoinvent 3.0 database. Previous studies have been referred to discuss and calculate the area of bamboo cultivation required to sequestrate the generated carbon from the flooring.

Findings

The study has found that endpoint category damage to resources, and midpoint categories of climate change, metal depletion and agricultural land use are highly impacted in building floorings. The study has also found that the Marble-stone floor generates higher environmental impacts than the Kota-stone floor in most of the midpoint and endpoint impact categories. This difference is significant in the raw material phase due to the different compositions of stones. The study also found that Bamboo has excellent potential to act as a carbon sink and mitigate the generated carbon.

Research limitations/implications

This study excludes human labour, cutting and distribution of floor tiles made of Marble-stone and Kota-stone. The researcher can use the study to evaluate, compare and benchmark the various building flooring options from the environmental perspective. The study aids to the body of knowledge available on the various building flooring options by presenting the LCA or the environmental impacts generated by two flooring options. It is expected that the architects and builders can use these results to develop carbon-neutral buildings. This study provides a methodology for governments, constructors, builders and individuals to evaluate, compare and benchmark the various construction materials from the environmental perspective by computing the environmental impacts throughout the life cycle of the materials.

Originality/value

This study compares two widely used building flooring options using the LCA methodology and evaluates the potential of bamboo cultivation near the buildings for carbon sinks. The study is unique because it shows the environmental impacts of two flooring options and the carbon sequestration method to mitigate/absorb the generated environmental impacts in or around the building itself through bamboo cultivation. This study may set the foundation for carbon-neutral buildings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 9 June 2023

Paula Hearn Moore, Ben Le and Donna L. Paul

This paper examines how manufacturing firms impacted by the nitrogen oxides (NOx) Budget Trading Program (NBP) strategically managed working capital to release funds for increased…

Abstract

Purpose

This paper examines how manufacturing firms impacted by the nitrogen oxides (NOx) Budget Trading Program (NBP) strategically managed working capital to release funds for increased costs and mitigate the negative impact on firm performance.

Design/methodology/approach

The study uses a panel data set including 11,302 manufacturing firm-year observations listed on the US exchanges during the period 2000–2008. The authors use Tobin's Q to proxy for firm performance, and cash holding, cash conversion cycle (CCC), days sales outstanding (DSO), days sales inventory (DSI) and days payable outstanding (DPO) for working capital management (WCM). The empirical analysis is conducted using both ordinary least squares (OLS) and propensity score matching (PSM) regressions.

Findings

The authors find that firms respond to the higher utility costs imposed by the NBP by decreasing CCC, DSO and DSI. This active WCM response partially mitigated the impact of increased compliance costs on performance for firms affected by the NBP. Results are robust in PSM regressions.

Research limitations/implications

Climate change is a global issue that has attracted increasing attention in recent years. This study shows how firms can adjust short-term financing strategies to address the costs of compliance with climate change regulation.

Originality/value

The paper contributes to the emerging literature on corporate finance and climate policy actions. The authors use the unique experimental setting of the NBP to examine the regulatory impact on corporate financial management. The authors demonstrate how firms used active WCM to mitigate the negative performance impact of regulatory compliance with the NBP, providing novel insight on the implication of compliance with climate change legislation.

Details

International Journal of Managerial Finance, vol. 20 no. 2
Type: Research Article
ISSN: 1743-9132

Keywords

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 192