Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 22 February 2021

Ying Yang, Wei Wu, Xuequn Cheng, Jinbin Zhao, Baijie Zhaoal and Xiaogang Li

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Abstract

Purpose

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Design/methodology/approach

Energy dispersive spectrometer, X-ray photoelectron spectroscopy, X-Ray diffraction and scanning electron microscopy were used to evaluate the corrosion resistance of the rust layers formed on these samples. Laser confocal microscopy was used to observe the corroded surfaces of the steels.

Findings

Results showed that Sb added can consume H+ in the solution, thereby preventing the oxygen reaction to slow down the corrosion rate. Meanwhile, a stable and insoluble substance (Sb2O3) in the acidic solution would be produced when the reaction of the product of Sb and H+ with the enough dissolved oxygen in the solution. Due to the precipitation of Sb2O3 and iron oxyhydroxides, the rust layer of Sb-containing steel became more uniform and compact, which resulted in better corrosion resistance in acid environment.

Originality/value

In this study, a new-type acid resistant low-alloy steel containing Sb was developed. Compared with the results, the corrosion mechanism of the new-type low-alloy steel in acid environment was discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 6 March 2017

Behnam Seyyedi

The paper introduces a microwave and electrochemical-assisted method for synthesis of chlorine-derived iron phthalocyanine pigment and oxygen reduction reaction catalyst…

Abstract

Purpose

The paper introduces a microwave and electrochemical-assisted method for synthesis of chlorine-derived iron phthalocyanine pigment and oxygen reduction reaction catalyst nanoparticles. The aims of this study are to investigate the possibility of nano-scale particle size (<35 nm), high-efficiency product reaction, remove acidic wastewater, time optimization and maximize number of chlorine on aromatic rings.

Design/methodology/approach

The paper presents a combined synthesis technique, which does not have the problems of the conventional methods. Chlorinated iron phthalocyanine nanoparticles have been fabricated using phthalic anhydride, urea (high purity), electrochemical-generated iron (II) cations and microwave irradiation as promoter. The approach yields a product of high quality, uniform particle size distribution and high efficiency and that was environment-friendly.

Findings

The particle size and time needed for the production of chlorinated iron phthalocyanine were about 35 nm and 7 min, respectively.

Research limitations/implications

The catalyst, that is used in this method, should be weighed carefully. In addition, the solvent should be a saturated solution of NaCl in water.

Practical implications

The method provides a simple and practical solution to improving the synthesis of an iron-based catalyst for oxygen reduction reaction.

Originality/value

The combined method for synthesis of chlorinated iron phthalocyanine was novel and can find numerous applications in the industry, especially as an oxygen reduction reaction non-precious metal catalyst.

Details

Pigment & Resin Technology, vol. 46 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 1973

J.A. von Fraunhofer

In general, whenever water and metals are in contact with each other in the presence of air and dissolved salts, corrosion will usually occur. The critical factors in this…

Abstract

In general, whenever water and metals are in contact with each other in the presence of air and dissolved salts, corrosion will usually occur. The critical factors in this situation will be the nature of the metal, the composition of the water, i.e. its pH, conductivity, the concentration and the composition of the dissolved salts, and the temperature. Elevated temperatures, as in boiler water systems, exacerbate any corrosion problems.

Details

Anti-Corrosion Methods and Materials, vol. 20 no. 7
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article
Publication date: 3 July 2017

Behnam Seyyedi

The purpose of this paper is to introduce bio-inspired FeN4-S-C black nano-electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The FeN4-S-C…

Abstract

Purpose

The purpose of this paper is to introduce bio-inspired FeN4-S-C black nano-electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The FeN4-S-C derived without pyrolysis of precursors in high temperature is recognized as a new electrocatalyst for the ORR in an alkaline electrolyte. For the proper design of bio-inspired nano-electrocatalyst for the ORR performance, chlorinated iron (II) phthalocyanine nanoparticles were used as templates for achieving the active sites in aqueous KOH by rotating disk electrode methods. The most active FeN4-S-C catalyst exhibited a remarkable ORR activity in the alkaline medium. The objectives of this paper are to investigate the possibility of nanoscale particles size (˜5nm) of electrocatalyst, to achieve four-electron transfer mechanism and to exhibit much superior catalytic stability in measurements. This paper will shed light on bio-inspired FeN4-S-C materials for the ORR catalysis in alkaline fuel cells.

Design/methodology/approach

The paper presents a new bio-inspired nano-electrocatalyst for the ORR, which has activity nearby platinum/carbon electrocatalyst. Chlorinated iron phthalocyanine nanoparticles have been used as FeN4 template, which is the key point for the ORR. Bio-inspired nano-electrocatalyst has been fabricated using chlorinated iron phthalocyanine, sodium sulphide and carbon black.

Findings

The particles’ size was 5 nm and electron transfer number was 4.

Research limitations/implications

The catalyst that is used in this method should be weighed carefully. In addition, the solvent should be a saturated solution of NaCl in water.

Practical implications

The method provides a simple and practical solution to improving the synthesis of iron-based catalyst for ORR.

Originality/value

The method for the synthesis of bio-inspired electrocatalyst was novel and can find numerous applications in industries, especially as ORR non-precious metal catalyst.

Details

Pigment & Resin Technology, vol. 46 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 2005

Hayam S. Awad

The aim of the present work was to study the synergistic effect of HEDP and zinc on inhibition of the corrosion of carbon steel in neutral oxygen‐containing chloride…

Abstract

Purpose

The aim of the present work was to study the synergistic effect of HEDP and zinc on inhibition of the corrosion of carbon steel in neutral oxygen‐containing chloride solutions, and to investigate the effect of zinc‐HEDP molar ratio on the effectiveness of the zinc‐HEDP inhibitive mixtures.

Design/methodology/approach

The inhibition of the corrosion of carbon steel by zinc‐HEDP mixtures in neutral oxygen‐containing solutions was investigated in the presence of 0.003 M (106 ppm) chloride.

Findings

It was shown that the inhibition by these mixtures depended not only on the zinc/HEDP molar ratio but also on the concentration of both zinc and HEDP. HEDP concentration appeared to be crucial where good inhibition was not achieved at low concentrations and aggressive nature is observed at high HEDP levels. The effectiveness of the zinc‐HEDP mixtures enhanced inhibition by increasing the zinc content of the mixture, but the mechanism was only effective to a certain level, above which the inhibition effect declined. The predominant corrosion control mechanism of the zinc‐HEDP mixture was on the anodic (metal dissolution) reaction, but it also affected the rate and mechanism of the oxygen reduction reaction.

Originality/value

Demonstrates how the effectiveness of the zinc‐HEDP mixtures can enhance inhibition by increasing the zinc content of the mixture.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2014

S. Sangiamsuk, B. Bubphachot, O. Watanabe and S. Rittidech

The purpose of this paper was to study the parameters affecting corrosion of the closed-loop oscillating heat-pipe with check valves (CLOHP/CV) in a system in clear that…

Abstract

Purpose

The purpose of this paper was to study the parameters affecting corrosion of the closed-loop oscillating heat-pipe with check valves (CLOHP/CV) in a system in clear that will be basic data to be used in future research. The majority of research focuses on the inner surface corrosion heat-pipe systems. The CLOHP/CV is commonly favored in cooling electronic devices, etc. Despite these common applications, limited reliable experimental research findings are available on the operation of the CLOHP/CV. Because of these reasons, the lack of detailed data, working fluids effect, working temperatures and duration of testing of the CLOHP/CV, this study focuses on determining the actual inner surface corrosion.

Design/methodology/approach

Seven types of copper tubes used in the CLOHP/CV set were sectioned to observe their inner surfaces. Seven different specimens with tube corrosion were examined by a visual inspection, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The technique for detecting metals solution in samples is based on the fact that ground state metals absorb light at specific wavelengths. Metal ions in a solution are converted to atomic state by means of a flame. In this study, concentration of copper particle in the working fluid was found by flame atomic absorption spectroscopy (Flame-AAS) and elements that occurred on inner surface tube were analyzed by EDX.

Findings

The analyses with SEM and EDX testing found that the character corrosion of inner surface of CLOHP/CV was pitting clearly. The analysis with Flame-AAS found that the concentration of copper particles in the distilled water and ethanol as working fluid is more than after 1,000 hours until 3,000 hours because of excess volume of oxygen in working fluid which causes many reactions at the beginning. When the oxygen decreases after 1,000 hours, it causes the reaction to decrease too and get the most concentration of copper particles, i.e. 18.57228 ppm or 0.40859 mg.

Originality/value

Corrosion-dependant maintenance must also be factored into the design. Producing reliable equipment that will become standardized and fixing the time for proper maintenance will require individuals that are knowledgeable about the materials that are going to be used in the design of such equipment. Nowadays, the lack of detailed data of working fluids effect, working temperatures and duration of testing of the CLOHP/CV focuses on determining the actual inner surface corrosion. Therefore, this research aimed to study the parameters affecting corrosion of the CLOHP/CV in a system in clear that will be basic data to be used in future research.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 28 April 2021

Zhaopeng Wang, Yi Wang, Bowei Zhang, Zhan Zhang, Kui Xiao, Junsheng Wu, Qiong Yao, Guojia Ma and Gang Sun

The purpose of this paper is to investigate the influence of the potential of hydrogen (pH) and dissolved oxygen in artificial seawater on the passivation behavior of 316L…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the potential of hydrogen (pH) and dissolved oxygen in artificial seawater on the passivation behavior of 316L stainless steel.

Design/methodology/approach

The corrosion behavior was studied by using electrochemical measurements such as electrochemical impedance spectroscopy and polarization curve. The passive films were characterized with X-ray photoelectron spectroscopy.

Findings

The polarization resistance of the passive film decreases as the pH value drops ascribed to the formation of much more point defects. The donor carrier concentration (ND) in the passive film formed in the deaerated condition is lower than that in aerated conditions. Nevertheless, this phenomenon is the opposite when the pH value is 1 due to the significant decrease of Fe oxides/hydroxides coupled with the stable content of Cr oxides/hydroxides species. In addition, the compositional variation of the passive film also leads to the changes of its semiconductor properties from N-type to bipolar type.

Originality/value

This paper shows the variation of polarization resistance, corrosion potential, passive film composition and semiconductor properties with the pH value and dissolved oxygen. The results can serve as references to the further study on crevice corrosion of 316L in seawater.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 21 June 2021

Mohammed I. Abdulsalam and Francisco Presuel-Moreno

The purpose of this paper is to study the susceptibility of these three commonly used corrosion resistance fasteners in seawater. For a more practical scenario, a local…

Abstract

Purpose

The purpose of this paper is to study the susceptibility of these three commonly used corrosion resistance fasteners in seawater. For a more practical scenario, a local Atlantic coastal seawater as received was used.

Design/methodology/approach

Carbon fiber reinforced polymer (CFRP) was fabricated with T700 carbon fiber (Toray Inc.) and VE8084 vinyl ester resin (Ashland) to make a unidirectional composite panel of thickness 1.8 mm. A conductive paint was applied to one of the sample edges that was perpendicular to the fiber direction, providing an electrical contact with carbon fibers to connect a copper wire. This external electric connection was used for potential measurements of both the open circuit potential (OCP) of the CFRP sample, and the mixed potential of the fastened set: consisting of the CFRP and the metallic fastener fastened to it. Three common fastener alloys were selected: 316SS, Monel and Titanium. For this purpose, a high impedance voltmeter was used in conjunction with a saturated calomel reference electrode. Measurements were taken daily. For longer time measurements, a four-channel high impedance analog data logger was used with 30 min sampling rate.

Findings

For both 316SS and Monel fastened sets, crevice corrosion occurred inside the occluded regions of the set, when immersed in coastal seawater. The attack was more severe for 316 stainless steel set. An isolated island attack of faceted surfaces morphology was seen for 316SS set. While, a circular ring of preferential grain boundary attack appeared for Monel set, indicating an IR (voltage) drop mechanism is more likely operating. Titanium-fastened sets showed high resistance to crevice corrosion when simmered in seawater. However, for long-time exposure, the sets became more susceptible to crevice corrosion attack supported by CFRP attachment (oxygen reduction reaction taking place at the carbon fibers).

Originality/value

Evidently, titanium, stainless steels and Monel are good candidates for galvanic corrosion resistance. However, their susceptibility to crevice corrosion when coupled with CFRP is a new challenging topic that needs further investigation. This is very important today because the vast application witnessed for CFRP material. This work involves developing an original methodology for this kind of investigation and was done at advanced laboratories of SeaTech at Florida Atlantic University by the Atlantic coastline.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 17 May 2013

Güray Kılınççeker and Hasan Demir

The purpose of this paper is to investigate the inhibition effect of cysteine on the corrosion behaviour of copper in 3.5% NaCl solution with and without cysteine.

Abstract

Purpose

The purpose of this paper is to investigate the inhibition effect of cysteine on the corrosion behaviour of copper in 3.5% NaCl solution with and without cysteine.

Design/methodology/approach

For this purpose, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) techniques were used. The surface morphology of the metal sample after exposure to the corrosive medium was investigated by scanning electron microscopy (SEM). The effect of temperature also was studied over the range 298‐328 K. Thermodynamic parameters (ΔG, ΔH and ΔS) were calculated and discussed.

Findings

It was found that cysteine could inhibit the corrosion of copper in 3.5% NaCl solution. Cysteine is an organic corrosion inhibitor for copper, and its molecules are physically adsorbed to form a protective film. Inhibition efficiency increases with decreasing cysteine concentration and the product behaves as an anodic‐type inhibitor.

Research limitations/implications

In this study, the inhibitory effect of cysteine with temperature change was investigated in environments containing 10−2 M cysteine solution at pH 8.5.

Practical implications

It will be possible to replace other inhibitors, with cysteine for copper protection in heating/cooling systems at higher temperatures.

Originality/value

Cysteine acts as an anodic inhibitor especially for copper‐based materials in acidic solution. The interaction between the cysteine molecule and copper in alkaline media has not been investigated in detail. The main objectives of this study was to gain some insight into the protection of copper by cysteine in 3.5% NaCl medium at a pH value of 8.5.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 31 December 2015

JianGuo Liu, Zili Li, Yantao Li and BaoRong Hou

This paper aims to study the corrosion behavior of D32 steel suffered to marine splash zone. Type D32 structural steel has good mechanical properties and is commonly used…

Abstract

Purpose

This paper aims to study the corrosion behavior of D32 steel suffered to marine splash zone. Type D32 structural steel has good mechanical properties and is commonly used for offshore oil platform construction in China. To ensure the safety of marine steel structure, it is important to study the corrosion process of D32 steel in the splash zone.

Design/methodology/approach

The corrosion behavior of D32 steel in splash zone environments was studied using polarization curves and electrochemical impedance spectroscopy. The electrochemical results were obtained from the corroded steel samples exposed in the splash zone of a bespoke simulate device, while corrosion morphologies and corrosion products of the steel samples were characterized using scanning electron microscopy and X-ray diffraction.

Findings

In wet–dry cyclic exposure, the reaction was a self-perpetuating process of chemical oxidation and electrochemical reduction. The rust itself took part in the reduction processes and, hence, increased the corrosion rate of the steel samples.

Originality/value

Finally, the corrosion process of D32 steel in splash zone is considered.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000