Search results

1 – 5 of 5
Article
Publication date: 29 April 2014

Katarzyna Stęchły, Gabriel Wecel and Derek B. Ingham

The main goal of this work was the CFD analysis of air and oxy-coal combustion, in order to develop a validated with experimental measurements model of the combustion chamber…

Abstract

Purpose

The main goal of this work was the CFD analysis of air and oxy-coal combustion, in order to develop a validated with experimental measurements model of the combustion chamber. Moreover, the purpose of this paper is to provide information about limitations of the sub-models implemented in commercial CFD code ANSYS Fluent version 13.0 for the oxy-coal combustion simulations. The influence of implementation of the weighted sum of gray gas model (WSGGM) with coefficients updated to oxy-coal combustion environment has been investigated.

Design/methodology/approach

The sub-models validated with experimental measurements model for the air combustion has been used to predict the oxy-coal combustion case and subsequently the numerical solutions have been compared with the experimental data, which enclose the surface incident radiation (SIR) and the flue gas temperature. To improve the numerical prediction of the oxy-coal combustion process the own routine for calculating properties of the oxy-combustion product has been implemented.

Findings

The results of numerical simulation of combustion in the air environment fitted within the experimental measurements accuracy. However, the air combustion sub-models implemented for the oxy-coal combustion simulations does not predict the SIR within the experimental data accuracy. The implementation of own routine, which uses the coefficients calculated for oxy-coal combustion environment shows improvement in numerical prediction of oxy-coal combustion.

Originality/value

The radiative properties of gases in the combustion chamber during oxy-coal combustion calculated using the WSGGM implemented in ANSYS Fluent 13.0 do not predict the SIR within experimental measurement accuracy, however, implementation of WSGGM with updated coefficients provide a reasonable improvement in numerical prediction of SIR in the oxy-coal combustion.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 3 October 2019

Peyman Maghsoudi and Mehdi Bidabadi

The purpose of this study is to describe the combustion of a magnesium particle falling into a hot oxidizer medium.

Abstract

Purpose

The purpose of this study is to describe the combustion of a magnesium particle falling into a hot oxidizer medium.

Design/methodology/approach

The governing equations, including mass, momentum and energy conservation equations, are numerically solved. Afterward, the influences of effective parameters on the temperature distribution and burning time are investigated. Artificial neural network (ANN) is applied to approximate the particle temperature as a function of time, diameter and porosity factor. To obtain the best arrangement of the ANN structure, an optimization process is conducted.

Findings

The results show that by considering variations of the particle size, the maximum temperature increases compared to the case in which the particle diameter is constant. Also, the ignition and burning times and the maximum temperature of the moving particle are lower than those of the motionless particle. Optimum network has the best values of regression coefficient and mean relative error whose values are found to be 0.99991 and 1.58 per cent, respectively.

Originality/value

In this study, particle size varies over the combustion process that leads to calculation of particle burning time. In addition, the effects of the motion and porosity of the particle are examined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Tien Phuc Dang, Zhengqi Gu and Zhen Chen

The purpose of this paper is to gain a better understanding of the flow field structure around the race car in two cases: stationary wheel and rotating wheel. In addition, this…

Abstract

Purpose

The purpose of this paper is to gain a better understanding of the flow field structure around the race car in two cases: stationary wheel and rotating wheel. In addition, this paper also illustrates and clarifies the influence of wheel rotation on the aerodynamic characteristics around the race car.

Design/methodology/approach

The author uses steady Reynolds-Averaged Navier-Stokes (RANS) equations with the Realizable k-ε model to study model open-wheel race car. Two cases are considered, a rotating wheel and stationary wheel.

Findings

The results obtained from the study are presented graphically, pressure, velocity distribution, the flow field structure, lift coefficient (Cl) and drag coefficient (Cd) for two cases and the significant influence of rotating case on flow field structure around wheel and aerodynamic characteristics of race car. The decreases in Cd and Cl values in the rotating case for the race car are 16.83 and 13.25 per cent, respectively, when compared to the stationary case.

Originality/value

Understanding the flow field structures and aerodynamic characteristics around the race car in two cases by the steady RANS equations with the Realizable k-ε turbulence model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Wojciech P. Adamczyk, Pawel Kozolub, Gabriel Węcel and Arkadiusz Ryfa

The purpose of this paper is to show possible approaches which can be used for modeling complex flow phenomena caused by swirl burners combined with simulating coal combustion

Abstract

Purpose

The purpose of this paper is to show possible approaches which can be used for modeling complex flow phenomena caused by swirl burners combined with simulating coal combustion process using air- and oxy-combustion technologies. Additionally, the response of exist boiler working parameter on changing the oxidizer composition from air to a mixture of the oxygen and recirculated flue gases is investigated. Moreover, the heat transfer in the superheaters section of the boiler was taken into account by modeling of the heat exchange process between continuum phase and three stages of the steam superheaters.

Design/methodology/approach

An accurate solution of the flow field is required in order to predict combustion phenomena correctly for numerical simulations of the industrial pulverized coal (PC) boilers. Nevertheless, it is a very demanding task due to the complicated swirl burner construction and complex character of the flow. The presented simulations were performed using the discrete phase model for tracking particles and combustion phenomena in a dispersed phase, whereas the Eulerian approach was applied for the volatile combustion process modeling in a gaseous phase.

Findings

Applying the air- to oxy-combustion technology the temperature in the combustion chamber, decreased for investigated oxidizer compositions. This was caused by the higher heat capacity of flue gases which also influences on the level of the heat flux at the boiler walls. Simulations shows that increasing the O2 concentration to 30 percent of volume base in the oxidizer mixture provided the similar combustion conditions as those for the conventional air firing. Moreover, the evaluated results give a good overview of differences between approaches used for complex swirl burners simulations.

Practical implications

Nowadays, the numerical techniques such as computational fluid dynamic (CFD) can be seen as an useful engineering tool for design and processes optimization purposes. The application of the CFD gives a possibility to predict the combustion phenomena in a large industrial PC boiler and investigate the impact of changing the combustion technology from a conventional air firing to oxy-fuel combustion.

Originality/value

This paper gives good overview on existing technique, approaches used for modeling PC boiler equipped with complex swirl burners. Additionally, the novelty of this work is application of the heat exchanger model for predicting heat loses in convective section of the boiler. This usually is not taken into account during simulations. The reader can also find basic concept of oxy-combustion technology, and their impact on boiler working conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5