Search results

1 – 10 of 85
Content available
98

Abstract

Details

Circuit World, vol. 32 no. 2
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 16 August 2023

Florian Ausserer, Igor Velkavrh, Fevzi Kafexhiu and Carsten Gachot

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Abstract

Purpose

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Design/methodology/approach

A pressure chamber allowing oscillating movement through an outer shaft was constructed and mounted on an oscillating tribometer. Due to a metal spring bellows system, a methodology for the evaluation of the coefficient of friction values separately from the spring forces was developed.

Findings

The selected material concept was qualitatively and quantitatively assessed. An evaluation of the static and the dynamic coefficient of friction was performed, which was crucial for the understanding of the adhesion effects of the tested material pairing. The amount of information that is lost due to averaging the measured friction values is higher than one would expect.

Originality/value

The developed experimental setup is unique and, compared with the existing tribometers for testing under gas ambient pressures, allows testing under contact conditions that are closer to real applications, such as compressors and expanders. An in-depth observation of the adhesion and stick–slip effects of the tested material pairings is possible as well.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0173/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 8 November 2011

323

Abstract

Details

Pigment & Resin Technology, vol. 40 no. 6
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 December 1998

81

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
91

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 4
Type: Research Article
ISSN: 0003-5599

Abstract

Details

Soldering & Surface Mount Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0954-0911

Abstract

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 2
Type: Research Article
ISSN: 0954-0911

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 23 August 2011

473

Abstract

Details

Circuit World, vol. 37 no. 3
Type: Research Article
ISSN: 0305-6120

1 – 10 of 85