Search results

1 – 10 of 20
Article
Publication date: 16 January 2024

Amin Reihani, Fatemeh Shaki and Ala Azari

Acrylamide (AA) is predominantly used as a synthetic substance within various industries. However, AA is also recognized as a carcinogen. Zinc oxide nanoparticles (ZnO-NPs) are…

Abstract

Purpose

Acrylamide (AA) is predominantly used as a synthetic substance within various industries. However, AA is also recognized as a carcinogen. Zinc oxide nanoparticles (ZnO-NPs) are becoming increasingly attractive as medical agents. However, to the knowledge, the effects of ZnO-NPs on preventing cytotoxicity with AA have not been reported. Therefore, this study aims to determine the protective effects of ZnO-NPs against the cytotoxicity caused by AA.

Design/methodology/approach

MTT assay was used to determine the cytotoxicity. Reactive oxygen species (ROS) formation, carbonyl protein, malondialdehyde (MDA) and glutathione (GSH) were measured and analyzed statistically.

Findings

The findings observed that the presence of 200 µM AA led to a substantial reduction in cell viability (p < 0.001). However, ZnO-NPs restored cell viability at 50 and 100 µM concentrations (p = 0.0121 and p = 0.0011, respectively). The levels of ROS were significantly reduced (p = 0.001 and p = < 0.001) to 518 ± 47.57 and 364 ± 47.79, respectively, compared to the AA group. The levels of GSH were significantly increased (p = 0.004 and p = 0.002) to 16.9 ± 1.3 and 17.6 ± 0.5, respectively, compared to the AA group. The levels of MDA were significantly decreased (p = 0.005, p < 0.001 and p < 0.001) when compared to the AA group, as were the levels of carbonyl protein (p = 0.009 and p < 0.002) in comparison to the AA group.

Originality/value

In summary, the outcomes of this research indicate that ZnO-NPs played a role in inhibiting AA-induced oxidative stress and cytotoxicity.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 6 October 2023

Aishwariya Madhavan, Meher Unnati, K. Rachana, Prateek Jain, K. Bhashasaraswathi and Apurva Kumar Joshi

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

1216

Abstract

Purpose

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

Design/methodology/approach

Dry shampoo compositions were formulated containing alpha olefin sulfonate (AOS), sodium cocoyl isethionate (SCI), microcrystalline cellulose, mannitol, carboxymethyl cellulose, maltodextrin and sodium benzoate with or without extract of Cinnamomum zeylanicum bark. Cinnamon extract was chosen for this study owing to its ubiquitously known antioxidant attributes. The formulations were tested for detergency action and antioxidant potential in vitro.

Findings

Cinnamomum zeylanicum extract exhibited noticeable antioxidant activity in vitro. The authors observed that addition of the bark extract to the shampoo formulation was associated with remarkable increase in total phenolic content, total antioxidant activity and radical scavenging activity without any effect on detergency action.

Research limitations/implications

This preliminary study provides a powder shampoo formulation which exhibits antioxidant attributes as a result of incorporation of cinnamon bark extract. Clinical efficacy of the formulation remains to be tested.

Practical implications

Owing to the powder format of the shampoo, the formulation can be manufactured with ease and economically. Functionalizing the formulation with enhancement of antioxidant activity by incorporation of cinnamon bark extract may be associated with beneficial clinical outcomes, which remains to be tested.

Social implications

The proposed formulation may be stored and sold in eco-friendly packing material, thus could pave the way for reducing the burden of plastic consumption by the shampoo industry.

Originality/value

The present work demonstrates that incorporation of cinnamon bark extract to a powder shampoo formulation, containing AOS and SCI as principle surfactants, significantly enhances its antioxidant attributes.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 2 January 2023

Eslam Taha, Mostafa Attia Mohie, Mahmoud Sayed Korany, Naglaa Aly, Alaa Ropy and Mosaad Negem

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation…

Abstract

Purpose

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation and ultraviolet (UV) degradation.

Design/methodology/approach

The protection of painting against different deterioration factors necessitates the sustainable methods and advanced techniques. Scanning electron microscopy and transmission electron microscopy have been used to investigate the morphological structure of the painting and MoS3 QDs, respectively, and optical microscopy was used to examine antibacterial activity of MoS3 QDs towards different types of bacteria. To investigate the protection of painting against deterioration, the Fourier transform IR spectroscopy (FTIR) was used to investigate the paintings left in open air for a year. Chemical composition and crystal structure of MoS3 QDs have been studied using X-ray diffraction and X-ray photoelectron spectroscopy analysis, respectively.

Findings

The addition of MoS3 nanoparticles into painted coatings enhances the durability of linseed oil-based paintings toward UV ageing regarding the change in colour which confirmed by FTIR analysis. The protection of oil painting opposed to various deterioration factors was developed by involving of MoS3 QDs in the coating of the painting. Antibacterial effect of MoS3 QDs was tested against different types of bacteria such as Pseudomonas aeruginosa confirming that the MoS3 QDs involved in the coatings of oil paintings produces a high protection layer for the paintings against several microbial attacks. In addition, coatings containing MoS3 QDs reduce the accumulation of dirt on oil paintings when subjected to open air for a year.

Originality/value

The novel MoS3 QDs was used to form a protective and transparent coating layer for the oil painting to overcome the deterioration, displays the promising protection and can be applied for different oil paintings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 September 2023

Li Wang, Yanhong Lv, Tao Wang, Shuting Wan and Yanling Ye

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the…

Abstract

Purpose

The purpose of this research is to address the existing gap in the study of construction and demolition waste (C&DW) by focusing on its impact on human health throughout the entire life cycle. And this research provides a comprehensive assessment model that incorporates the release of gaseous pollutants and particulate matter during the whole life cycle of C&DW, thereby contributing to a more holistic understanding of its impact on human health.

Design/methodology/approach

The research was conducted in two stages. Firstly, the quantitative model framework of pollutants emitted by C&DW was established. Three types of pollutants were considered, namely nitrogen dioxide (NO2), sulfur dioxide (SO2) and inhalable particulate matter (PM10). Second, disability-adjusted life year (DALY) and willingness to pay (WTP) assessments were used to provide a monetary quantified health impact for pollutants released by C&DW.

Findings

The results show that the WTP value of PM10 is the highest among all pollutants and 8.68E+07 dollars/a, while the WTP value in the disposal stage accounts for the largest proportion compared to the generation and transportation stage. These findings emphasize the importance of PM10 and C&DW treatment stage for pollutant treatment.

Originality/value

The results of this study are of great significance for the management department to optimize the construction management scheme to reduce the total amount of pollutants produced by C&DW and its harm to human health. Meanwhile, this study fills the gap in existing research on the impact assessment of C&DW on human health throughout the whole life cycle, and provides reference and basis for future research and policy formulation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 April 2024

Xiaotong Zhang and Qiu Zhang

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of…

Abstract

Purpose

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of bacterial cellulose (BC) and silver nanoparticles (AgNPs) as a platform for the immobilization of a molecularly imprinted polymer (MIP) film. The main objective was to enhance the electrochemical properties of the sensor and achieve a high level of selectivity and sensitivity toward amsacrine molecules in complex biological samples.

Design/methodology/approach

The composite of BC-AgNPs was synthesized and characterized using FTIR, XRD and SEM techniques. The MIP film was molecularly imprinted to selectively bind amsacrine molecules. Electrochemical characterization, including cyclic voltammetry and electrochemical impedance spectroscopy, was performed to evaluate the modified electrode’s conductivity and electron transfer compared to the bare glassy carbon electrode (GCE). Differential pulse voltammetry was used for quantitative detection of amsacrine in the concentration range of 30–110 µM.

Findings

The developed molecular imprinting electrochemical sensor demonstrated significant improvements in conductivity and electron transfer compared to the bare GCE. The sensor exhibited a linear response to amsacrine concentrations between 30 and 110 µM, with a low limit of detection of 1.51 µM. The electrochemical response of the sensor showed remarkable changes before and after amsacrine binding, indicating the successful imprinting of amsacrine in the MIP film. The sensor displayed excellent selectivity for amsacrine in the presence of interfering substances, and it exhibited good stability and reproducibility.

Originality/value

This study presents a novel molecular imprinting electrochemical sensor design using a composite of BC and AgNPs as a platform for MIP film immobilization. The incorporation of BC-AgNPs improved the sensor’s electrochemical properties, leading to enhanced sensitivity and selectivity for amsacrine detection. The successful imprinting of amsacrine in the MIP film contributes to the sensor's specificity. The sensor's ability to detect amsacrine in a concentration range relevant to anticancer therapy and its excellent performance in complex sample matrices add significant value to the field of electrochemical sensing for pharmaceutical analysis.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 February 2022

Khaled M.M. Koriem, Nevein N. Fadl, Salwa R. El-Zayat, Eman N. Hosny and Fatma A. Morsy

The purpose of this study was designed to investigate anise oil and geranium oil to amend body weight, serum bile acid and vitamin D, and liver histology in depressed rats.

Abstract

Purpose

The purpose of this study was designed to investigate anise oil and geranium oil to amend body weight, serum bile acid and vitamin D, and liver histology in depressed rats.

Design/methodology/approach

Eighty male albino rats were divided into normal and depressed rats. Normal rats (40 rats) were divided into four equal groups: control, venlafaxine drug, anise oil and geranium oil groups. Depressed rats (40 rats) were divided into four equal groups: depressed rats, depressed rats + venlafaxine drug, depressed rats + anise oil and depressed rats + geranium oil groups. Body weight, food consumption and water intake were detected. Animal behavior, cerebral cortex and hippocampus neurotransmitters, serum bile acid and vitamin D and liver histology were also investigated in this study.

Findings

Body weight (117 ± 7.6 g), food consumption (5.6 ± 1.4 g/day) and water intake (8.7 ± 1.2 ml/day) were significantly decreased (p < 0.001) in depression compared to body weight (153 ± 7.6 g), food consumption (12.7 ± 1.6 g/day) and water intake (15.3 ± 1.6 ml/day) in control. Animal behavioral tests, e.g. sucrose preference (48.8 ± 1.5) test, distance traveled (70.0 ± 16.3), center square entries (0.20 ± 0.10), center square duration (52.18 ± 11.9), tail suspension (54.70 ± 2.9 s) test and forced swimming (134.4 ± 5.5 s) test were significantly decreased (p < 0.001) in depression compared to sucrose preference (89.2 ± 1.7) test, distance traveled (226 ± 90.1), center square entries (1.4 ± 1.8), center square duration (3.6 ± 2.0), tail suspension (19.3 ± 2.1 s) test and forced swimming (83.7 ± 3.6 s) test in control. Cerebral cortex and hippocampus areas neurotransmitters such as serotonin (7.4 ± 1.7 and 1.2 ± 0.54 pg/g tissue), dopamine (6.3 ± 1.5 and 0.86 ± 0.07 pg/g tissue), norepinephrine (8.1 ± 1.7 and 1.4 ± 0.41 pg/g tissue) and gamma aminobutyric acid (GABA) (1.3 ± 0.41 and 0.08 ± 0.04 µmole/g tissue), serum bile acid (46.8 ± 3.5 µmole/L) and vitamin D (1.3 ± 0.37 ng/ml) were significantly decreased (p?0.001) in depression compared to cerebral cortex and hippocampus areas neurotransmitters such as serotonin (16.8 ± 2.1 and 4.0 ± 1.4 pg/g tissue), dopamine (15.7 ± 2.0 and 1.8 ± 0.49 pg/g tissue) norepinephrine (18.2 ± 2.3 and 3.8 ± 1.3 pg/g tissue) and GABA (2.7 ± 0.62 and 0.16 ± 0.06 µmole/g tissue), serum bile acid (90.5 ± 4.3 µmole/L) and vitamin D (2.7 ± 0.58 ng/ml) in control. Depression induced injury to hepatic tissues. Oral supplementation with anise oil and geranium oil ameliorated body weight, serum bile acid and vitamin D and liver histology in depressed rats.

Originality/value

Depression treatment persists for a long time, so the search for a new herbal treatment is of concern due to available sources, cheap and no side effects of herbal plants. Anise oil and geranium oil improved body weight, food consumption, water intake, animal behavioral tests, cerebral cortex and hippocampus areas neurotransmitters, serum bile acid and vitamin D and liver histology in depression.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 June 2023

Gomaa Abdel-Maksoud, Hanaa Nasr, Sayed Hussein Samaha and Mahmoud Saad ELdeen Kassem

This study aims to evaluate the state of preservation of one of the most famous manuscripts dated back to the 15th century using some analytical techniques to identify the…

Abstract

Purpose

This study aims to evaluate the state of preservation of one of the most famous manuscripts dated back to the 15th century using some analytical techniques to identify the manuscript components, explain its deterioration mechanisms and produce some solutions for conservation processes in future studies.

Design/methodology/approach

The analytical techniques used were visual assessment, digital microscope, scanning electron microscope (SEM) with EDX, pH measurement, attenuated total reflection – Fourier transform infrared spectroscopy (ATR/FTIR) and cellulose crystallinity.

Findings

Stains, missed parts and scratching were the most common aspects of deterioration. Some insects were observed by digital microscope. The SEM showed that linen fibers and goat skin were used to manufacture paper sheets and leather binding. Energy dispersive X-ray analysis proved that niobium and tantalum were added during the manufacture of paper sheets. Carbon black ink was the main writing material. The other pigments used were cinnabar in red ink, gold color from brass and blue color from lapis lazuli. FTIR analysis proved that some chemical changes were noticed. Low crystallinity of the historical paper was obtained. There was a reduction in the pH value of the historical bookbinding.

Originality/value

The importance of the analytical techniques used to detect the main components, forms and mechanism of deterioration of the studied manuscript. The elements of niobium and tantalum were added to paper sheets, which protected them from deterioration. The insects such as house flies and Sitophilus granarius were found in the manuscripts.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 20