Search results

1 – 10 of over 21000
Article
Publication date: 8 March 2011

Arash Abbasalizadeh Boora, Firuz Zare and Arindam Ghosh

Multi‐level diode‐clamped inverters have the challenge of capacitor voltage balancing when the number of DC‐link capacitors is three or more. On the other hand, asymmetrical…

Abstract

Purpose

Multi‐level diode‐clamped inverters have the challenge of capacitor voltage balancing when the number of DC‐link capacitors is three or more. On the other hand, asymmetrical DC‐link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages.

Design/methodology/approach

A family of multi‐output DC‐DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC‐link voltages of an asymmetrical four‐level diode‐clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters.

Findings

The three‐output voltage‐sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four‐level asymmetrical diode‐clamped inverter supplying highly resistive loads.

Originality/value

This paper shows that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages and that there is a possibility of operation at high‐modulation index despite reference voltage magnitude and power factor variations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 January 2022

Pradeep Vishnuram and Ramachandiran Gunabalan

Induction heating applications aided by power electronic control have become very attractive in the recent past. For cooking applications, power electronics circuits are very…

Abstract

Purpose

Induction heating applications aided by power electronic control have become very attractive in the recent past. For cooking applications, power electronics circuits are very suitable to feed power to multi loads with an appropriate control technique. The purpose of this paper is to develop a three leg inverter to feed power to three loads simultaneously and independently.

Design/methodology/approach

Pulse density modulation control technique is used to control the output power independently with constant switching frequency.

Findings

Multi-load handling converter with independent power control is achieved with reduced number of switching devices (two switches/per load) with simple control strategy.

Originality/value

The proposed system is simulated in MATLAB/Simulink, and the thermal analysis is carried out in COMSOL multi-physics software. The hardware realisation is performed for a 1 kW prototype with 20 kHz switching frequency and 10 kHz pulse density modulation frequency. PIC16F877A microcontroller is used to validate the experimental results for various values of control signals (DPDM). The simulation and experimental results are in good agreement and validates the developed system.

Article
Publication date: 12 December 2017

Yu Tian, Jun Zhang, Zongjin Ren, Wei Liu, Zhenyuan Jia and Qingbing Chang

This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.

Abstract

Purpose

This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.

Design/methodology/approach

This paper presents a mapping solution method of sensors’ outputs based on the Kirchhoff thin plate theory, builds force-deformation differential equations with specific boundary conditions, uses finite difference (FD) method to solve the equations and analyzes outputs in offset loading forces in four-sensor square layout in main direction. The resultant force deviations calculated by the Kirchhoff theory are optimized with sequence quadratic program (SQP) method, and a calibration method of multiple loading points (MLP) based on the Kirchhoff theory is presented. Experiments of static calibration and verification are complemented to contrast the novel and single loading point (SLP) calibration method.

Findings

Experiments of static calibration and its verification show that at a loading force of 5,000N, the average resultant force deviations with MLP is 17.87N (0.35% FS) compared with single loading point method 26.45N (0.53% FS), improving calibration and measurement precision.

Originality value

A novel calibration method with MLP is presented. Force distributions of multiple sensors of main direction in piezoelectric dynamometer with offset loading force are solved with the Kirchhoff theory. The resultant force deviations calculated by Kirchhoff theory are optimized with the SQP method.

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 October 2023

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant…

Abstract

Purpose

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant converter does not decrease with the increase of the switching frequency.

Design/methodology/approach

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated under light-load conditions, the limitations of the previous method are explained and a new circuit improvement is proposed.

Findings

In this paper, an improved circuit is proposed, and the impedance Bode plot is used to verify that the circuit can effectively improve the voltage gain problem under light-load conditions. Finally, the experimental results verify the effectiveness of the proposed circuit through comparison with traditional solutions and circuits.

Originality/value

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated, the limitations of the previous method are explained and a new circuit improvement is proposed. When compared with the previous method, the proposed circuit improvement can suppress the voltage gain increase that occurs when the switching frequency increases to a certain level.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 March 2020

Qingbing Chang, Jun Zhang and Zongjin Ren

The purpose of this paper is to solve the problem that the relationship between loading forces, which were applied at different positions on a plane, and output values of…

Abstract

Purpose

The purpose of this paper is to solve the problem that the relationship between loading forces, which were applied at different positions on a plane, and output values of load-sharing dynamometer is non-linear.

Design/methodology/approach

First, the analytical model of ISPM (isodynamic surface proportional mapping method) method, which is used to calibrate dynamometer, was established. Then, a series of axial force calibration tests were performed on a load-sharing dynamometer at different loading positions. Finally, according to output values, calibration forces at different loading positions were calculated by ISPM method, and corresponding distribution histogram of calibration force error was generated.

Findings

The largest error between calculated force and standard force is 2.92 per cent, and the probability of calculated force error within 1 per cent is 91.03 per cent, which verify that the ISPM method is reliable for non-linear calibration of dynamometers.

Originality/value

The proposed ISPM method can achieve non-linear calibration between measured force and output signal of load-sharing dynamometer at different positions. In addition, ISPM method can also solve some complex non-linear problems, such as prediction of plane cutting force under the influence of multiple parameters, the force measurement of multi-degree-of-freedom platform and so on.

Article
Publication date: 1 June 1960

Electrohydraulic servos have been widely applied to the task of precisely positioning heavy loads. Common examples from the military field are radar antenna and rocket engine…

Abstract

Electrohydraulic servos have been widely applied to the task of precisely positioning heavy loads. Common examples from the military field are radar antenna and rocket engine swivelling drives. In the commercial area large machine tool position controls are a prime example. Even with relatively substantial driving linkages, the inertia of these loads frequently results in low natural frequency of the output load‐driver structure. Very commonly this is combined with extremely small natural damping forces. Natural frequencies from 5 to 20 c.p.s. with damping ratios in the oder of 0·05 critical are typical. This combination of resonance with low damping creates a severe stability and performance problem for the electrohydraulic servo drive. Efforts to deal with this problem have centred on introducing artificial damping. In the past this has been done either by use of a controlled piston by‐pass leakage path or by use of a load force feedback path. The former technique is simple but wasteful with respect to power and inherently involves serious performance compromises. The latter technique can be arranged to be unassailable on theoretical grounds. However, it leads to severe system complication and large incremental hardware requirements. Questions of a reliability penalty are raised. A new technique has been developed which possesses all the performance advantages of load feedback without serious increase in complexity. Called Dynamic Pressure Feedback, this technique involves only a modification of servo valve component. It utilizes for feedback purposes the inherently high load forces developed as piston differential pressures, insuring reliable operation. The pressures needed are already available at the valve. No new hydraulic or electrical connexions are added. The performance advantages adduced for the Dynamic Pressure Feedback Servo Valve have been confirmed in carefully controlled comparative tests on a typical load system. Correspondence of test data with analytical prediction is good. A sufficient number of Dynamic Pressure Feedback Servo Valves have been produced on a pilot production line and installed in several applications in the field to insure producibility and design reliability.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1955

TIME and Motion/Work Study faces a major issue today and it has got to be solved—quickly. Either it rises in a unified manner to the tasks Industry has allotted it, or it expends…

Abstract

TIME and Motion/Work Study faces a major issue today and it has got to be solved—quickly. Either it rises in a unified manner to the tasks Industry has allotted it, or it expends itself in shrill quarrels about controlling its destiny.

Details

Work Study, vol. 4 no. 5
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 1 February 1937

B. Sykes

IN this article it is proposed to deal with the broad principles of operation of the various systems of control of aircraft electrical generators which are in common use, rather…

Abstract

IN this article it is proposed to deal with the broad principles of operation of the various systems of control of aircraft electrical generators which are in common use, rather than with the detail design features and the many minor variations adopted by different manufacturers of this type of equipment.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 June 2022

Chinnaraj Gnanavel and Kumarasamy Vanchinathan

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and…

Abstract

Purpose

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and control schemes for multilevel inverter (MLI) topologies. Reduced harmonic modulation technology is used to produce 11-level output voltage with the production of renewable energy applications. The simulation is done in the MATLAB/Simulink for 11-level symmetric MLI and is correlated with the conventional inverter design.

Design/methodology/approach

This paper is focused on investigating the different types of asymmetric, symmetric and hybrid topologies and control methods used for the modular multilevel inverter (MMI) operation. Classical MLI configurations are affected by performance issues such as poor power quality, uneconomic structure and low efficiency.

Findings

The variations in both carrier and reference signals and their performance are analyzed for the proposed inverter topologies. The simulation result compares unipolar and bipolar pulse-width modulation (PWM) techniques with total harmonic distortion (THD) results. The solar-fed 11-level MMI is controlled using various modulation strategies, which are connected to marine emergency lighting loads. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by using SPARTAN 3A field programmable gate array (FPGA) board and the least harmonics are obtained by improving the power quality.

Originality/value

The simulation result compares unipolar and bipolar PWM techniques with THD results. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by a SPARTAN 3A field programmable gate array (FPGA) board, and the power quality is improved to achieve the lowest harmonics possible.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 21000