Search results

1 – 10 of 204
Article
Publication date: 6 December 2020

S. Das, Akram Ali and R.N. Jana

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching

Abstract

Purpose

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.

Design/methodology/approach

The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.

Findings

As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.

Practical implications

The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.

Originality/value

From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 June 2022

Yu Bai, Qiaoli Tang and Yan Zhang

The purpose of this study is to investigate the two-dimensional unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on oscillating stretched

Abstract

Purpose

The purpose of this study is to investigate the two-dimensional unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on oscillating stretched/contracted plates. First, based on the momentum equation at infinity, pressure field is modified by solving first-order differential equation. Meanwhile, thermal relaxation characteristic of fluid is described by Cattaneo–Christov thermal diffusion model.

Design/methodology/approach

Highly coupled model equations are transformed into simpler partial differential equations (PDE) via appropriate dimensionless variables. The approximate analytical solutions of unsteady inclined stagnation point flow on oscillating stretched and contracted plates are acquired by homotopy analysis method for the first time, to the best of the authors’ knowledge.

Findings

Results indicate that because of tensile state of plate, streamline near stagnation point disperses to both sides with stagnation point as center, while in the case of shrinking plate, streamline near stagnation point is concentrated near stagnation point. The enhancement of velocity ratio parameter leads to increasing of pressure variation rate, which promotes flow of fluid. In tensile state, surface friction coefficient on both sides of stagnation point has opposite symbols; when the plate is in shrinkage state, there is reflux near the right side of the stagnation point. In addition, although the addition of unsteady parameters and thermal relaxation parameters reduce heat transfer efficiency of fluid, heat transfer of fluid near the plate can also be enhanced by considering thermal relaxation effect when plate shrinks.

Originality/value

First, approximate analytical solutions of unsteady inclined stagnation point flow on oscillating stretched and contracted plates are researched, respectively. Second, pressure field is further modified. Finally, based on this, thermal relaxation characteristic of fluid is described by Cattaneo–Christov thermal diffusion model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

S.U. Khan, Sabir Ali Shehzad and N. Ali

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and technological…

Abstract

Purpose

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and technological processes. Therefore, the current research analysis reported the viscoelastic nanofluid flow over porous oscillatory moving sheet in the presence of microorganisms. A rate-type fluid namely Maxwell fluid is employed with the addition of nanoparticles. The paper aims to discuss this issue.

Design/methodology/approach

First, acceptable dimensionless variables are defined to convert the system of dimensional form into the system of dimensionless forms. Later on, the self-similar solution of the boundary value problem is computed by using the homotopy analysis method. The obtained results of velocity, temperature, mass concentration and motile microorganism density profiles are interpreted through physical background.

Findings

The presence of both thermophoresis and Brownian motion parameters also improve the thermophysical features of non-Newtonian nanoparticles. It is also pointed out that the presence of porous medium and magnetic force enhances the nanoparticles concentration. Moreover, a weaker distribution of gyrotactic microorganism has been depicted with Peclet number and bioconvection Lewis parameter.

Originality/value

No such article exists in the literature yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 June 2020

A. Ali, Soma Mitra Banerjee and S. Das

The purpose of this study is to analyze an unsteady MHD Darcy flow of nonNewtonian hybrid nanoliquid past an exponentially accelerated vertical plate under the influence of…

60

Abstract

Purpose

The purpose of this study is to analyze an unsteady MHD Darcy flow of nonNewtonian hybrid nanoliquid past an exponentially accelerated vertical plate under the influence of velocity slip, Hall and ion slip effects in a rotating frame of reference. The fluids in the flow domain are assumed to be viscously incompressible electrically conducting. Sodium alginate (SA) has been taken as a base Casson liquid. A strong uniform magnetic field is applied under the assumption of low magnetic Reynolds number. Effect of Hall and ion-slip currents on the flow field is examined. The ramped heating and time-varying concentration at the plate are taken into consideration. First-order homogeneous chemical reaction and heat absorption are also considered. Copper and alumina nanoparticles are dispersed in base fluid sodium alginate to be formed as hybrid nanoliquid.

Design/methodology/approach

The model problem is first formulated in terms of partial differential equations (PDEs) with physical conditions. Laplace transform method (LTM) is used on the nondimensional governing equations for their closed-form solution. Based on these results, expressions for nondimensional shear stresses, rate of heat and mass transfer are also determined. Graphical presentations are chalked out to inspect the impacts of physical parameters on the pertinent physical flow characteristics. Numerical values of the shear stresses, rate of heat and mass transfer at the plate are tabulated for various physical parameters.

Findings

Numerical exploration reveals that a significant increase in the secondary flow (i.e. crossflow) near the plate is guaranteed with an augmenting in Hall parameter or ion slip parameter. MHD and porosity have an opposite effect on velocity component profiles for both types of nanoliquids. Result addresses that both shear stresses are strongly enhanced by the Casson effect. Also, hybrid nanosuspension in Casson fluid (sodium alginate) exhibits a lower rate of heat transfer than usual nanoliquid.

Social implications

This model may be pertinent in cooling processes of metallic infinite plate in bath and hybrid magnetohydrodynamic (MHD) generators, metallurgical process, manufacturing dynamics of nanopolymers, magnetic field control of material processing, synthesis of smart polymers, making of paper and polyethylene, casting of metals, etc.

Originality/value

The originality of this study is to obtain an analytical solution of the modeled problem by using the Laplace transform method (LTM). Such an exact solution of nonNewtonian fluid flow, heat and mass transfer is rare in the literature. It is also worth remarking that the influence of Hall and ion slip effects on the flow of nonNewtonian hybrid nanoliquid is still an open question.

Article
Publication date: 6 November 2017

Siva Reddy Sheri, Chamkha Ali. J. and Anjan Kumar Suram

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a…

Abstract

Purpose

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a rotating system with ramped temperature.

Design/methodology/approach

Using the non-dimensional variables, the flow governing equations along with corresponding initial and boundary conditions have been transformed into non-dimensional form. These non-dimensional partial differential equations are solved by using finite element method. This method is powerful and stable. It provides excellent convergence and flexibility in providing solutions.

Findings

The effects of Soret number, Dufour number, rotation parameter, magnetic parameter, Hall current parameter, permeability parameter, thermal Grashof number, solutal Grashof number, Prandtl number, thermal radiation parameter, heat absorption parameter, Schmidt number, chemical reaction parameter and time on the fluid velocities, temperature and concentration are represented graphically in a significant way and the influence of pertinent flow governing parameters on the skin frictions and Nusselt number are presented in tabular form. On the other hand, a comparison for validation of the numerical code with previously published work is performed, and an excellent agreement is observed for the limited case existing literature.

Practical implications

A very useful source of information for researchers on the subject of MHD flow through porous medium in a rotating system with ramped temperature.

Originality/value

The problem is moderately original, as it contains many effects like thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects and chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

S. Sivasankaran, H. Niranjan and M. Bhuvaneswari

The purpose of this paper is to investigate the Newtonian heating and slip effect on mixed convective flow near a stagnation point in a porous medium with thermal radiation in the…

Abstract

Purpose

The purpose of this paper is to investigate the Newtonian heating and slip effect on mixed convective flow near a stagnation point in a porous medium with thermal radiation in the presence of magnetohydrodynamic (MHD), heat generation/absorption and chemical reaction.

Design/methodology/approach

The governing nonlinear coupled equations are converted into ordinary differential equations by similarity transformation. These equations are solved numerically using a Runge–Kutta–Fehlberg method with shooting technique and analytically using the homotopy analysis method (HAM).

Findings

The effects of different parameters on the fluid flow and heat transfer are investigated. It is found that the velocity and temperature profiles increase on an increase in the Biot number. The velocity and concentration profiles increase on decreasing the chemical reaction parameter.

Practical implications

This paper is helpful to the engineers and scientists in the field of thermal and manufacturing engineering.

Originality/value

The two-dimensional boundary layer flow over a vertical plate with slip and convective boundary conditions near the stagnation-point is analysed in the presence of magnetic field, radiation and heat generation/absorption. This paper is helpful to the engineers and scientists in the field of thermal and manufacturing engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

Himanshu Upreti, Sawan Kumar Rawat and Manoj Kumar

The purpose of this paper is to examine the velocity and temperature profile for a two-dimensional flow of single- and multi-walled nanotubes (CNTs)/H2O nanofluid over a flat…

Abstract

Purpose

The purpose of this paper is to examine the velocity and temperature profile for a two-dimensional flow of single- and multi-walled nanotubes (CNTs)/H2O nanofluid over a flat porous plate, under the impact of non-uniform heat sink/source and radiation. The influence of suction/blowing, viscous dissipation and magnetic field is also incorporated.

Design/methodology/approach

The solution of the PDEs describing the flow of nanofluid is accomplished using Runge–Kutta–Fehlberg approach with shooting scheme.

Findings

Quantities of physical importance such as local Nusselt number and skin friction coefficient for both types of nanotubes are computed and shown in tables. Also, the impact of copious factors like Prandtl number, magnetic field, Eckert number, porosity parameter, radiation parameter, non-linear stretching parameter, injection/suction, heating variable, particle volume fraction and non-uniform heat sink/source parameter on temperature and velocity profile is explained in detail with the aid of graphs.

Originality/value

Till date, no study has been reported that examines the role of radiation and non-uniform heat sink/source on MHD flow of CNTs‒water nanofluid over a porous plate. The numerical outcomes attained for the existing work are original and their originality is authenticated by comparing them with earlier published work. This problem is of importance, as there are many applications of the fluid flowing over a flat porous plate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 February 2020

Turkyilmazoglu Mustafa

The purpose of this study is to examine the non-Newtonian physical model of Eyring–Powell fluid for the rheology inside a long circular pipe.

Abstract

Purpose

The purpose of this study is to examine the non-Newtonian physical model of Eyring–Powell fluid for the rheology inside a long circular pipe.

Design/methodology/approach

Although many research studies are available now on this topic, none gives full solutions explicitly accessible.

Findings

It is proven here that the hydrodynamically fully developed fluid flow acknowledges the exact solution, influenced by a non-Newtonian parameter as well as the adverse pressure gradient parameter prevailing the flow domain. These parameters are unified under a new parameter known as the generalized Eyring–Powell parameter. Without the presented analytical data, it is impossible to detect the validity range of such physical non-Newtonian solutions, which is shown to be restricted.

Originality/value

Full solution of the energy equation for the thermally fully developed laminar regime is also presented under the assumption of uniform wall temperature at the pipe wall. The physical impacts of pertinent parameters on the rheology of the non-Newtonian fluid with regard to the Reynolds number, Darcy friction factor and pressure drop are easy to interpret from the derived formulae. Particularly, a decrease in the centerline velocity and an increase in the rate of heat transfer are clarified for the considered flow configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2000

M. Lappa, R. Savino and R. Monti

The influence of buoyancy forces on oscillatory Marangoni flow in liquid bridges of different aspect ratio is investigated by three‐dimensional, time‐dependent numerical solutions…

Abstract

The influence of buoyancy forces on oscillatory Marangoni flow in liquid bridges of different aspect ratio is investigated by three‐dimensional, time‐dependent numerical solutions and by laboratory experiments using a microscale apparatus and a thermographic visualisation system. Liquid bridges heated from above and from below are investigated. The numerical and experimental results show that for each aspect ratio and for both the heating conditions the onset of the Marangoni oscillatory flow is characterized by the appearance of a standing wave regime; after a certain time, a second transition to a travelling wave regime occurs. The three‐dimensional flow organization at the onset of instability is different according to whether the bridge is heated from above or from below. When the liquid bridge is heated from below, the critical Marangoni number is larger, the critical wave number (m) is smaller and the standing wave regime is more stable, compared with the case of the bridge heated from above. For the critical azimuthal wave number, two correlation laws are found as a function of the geometrical aspect ratio A.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2019

Mithun Kanchan and Ranjith Maniyeri

The purpose of this paper is to perform two-dimensional numerical simulation involving fluid-structure interaction of flexible filament. The filament is tethered to the bottom of…

Abstract

Purpose

The purpose of this paper is to perform two-dimensional numerical simulation involving fluid-structure interaction of flexible filament. The filament is tethered to the bottom of a rectangular channel with oscillating fluid flow inlet conditions at low Reynolds number. The simulations are performed using a temporal second-order finite volume-based immersed boundary method (IBM). Further, to understand the relation between different aspect ratios i.e. ratio of filament length to channel height (Len/H) and fixed channel geometry ratio, i.e. ratio of channel height to channel length (H/Lc) on mixing and pumping capabilities.

Design/methodology/approach

The discretization of governing continuity and Navier–Stokes equation is done by finite-volume method on a staggered Cartesian grid. SIMPLE algorithm is used to solve fluid velocity and pressure terms. Two cases of oscillatory flow conditions are used with the flexible filament tethered at the center of bottom channel wall. The first case is sinusoidal oscillatory flow with phase shift (SOFPS) and second case is sinusoidal oscillatory flow without phase shift (SOF). The simulation results are validated with filament dynamics studies of previous researchers. Further, parametric analysis is carried to study the effect of filament length (aspect ratio), filament bending rigidity and Reynolds number on the complex deformation and behavior of flexible filament interacting with nearby oscillating fluid motion.

Findings

It is found that selection of right filament length and bending rigidity is crucial for fluid mixing scenarios. The phase shift in fluid motion is also found to critically effect filament displacement dynamics, especially for rigid filaments. Aspect ratio, suitable for mixing applications is dependent on channel geometry ratio. Symmetric deformation is observed for filaments subjected to SOFPS condition irrespective of bending rigidity, whereas medium and low rigidity filaments placed in SOF condition show severe asymmetric behavior. Two key findings of this study are: symmetric filament conformity without appreciable bending produces sweeping motion in fluid flow, which is highly suited for mixing application; and asymmetric behavior shown by the filament depicts antiplectic metachronism commonly found in beating cilia. As a result, it is possible to pin point the type of fluid motion governing fluid mixing and fluid pumping. The developed computational model can, thus, successfully demonstrate filament-fluid interaction for a wide variety of similar problems.

Originality/value

The present study uses a temporal second-order finite volume-based IBM to examine flexible filament dynamics for various applications such as fluid mixing. Also, it highlights the relationship between channel geometry ratio and filament aspect ratio and its effect on filament sweep patterns. The study further reports the effect of filament displacement dynamics with or without phase shift for inlet oscillating fluid flow condition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 204