Search results

1 – 10 of 113
Article
Publication date: 8 September 2021

Bilal Malik, Jehanzeb Masud and Suhail Akhtar

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Abstract

Purpose

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Design/methodology/approach

The paper organizes experimental techniques to predict aircraft spin and recovery characteristics into three broad categories: dynamic free-flight tests, dynamic force tests and a relatively novel technique called wind tunnel based virtual flight testing.

Findings

After a thorough review, usefulness, limitations and open problems in the presented techniques are highlighted to provide a useful reference to researchers. The area of application of each technique within the research scope of aircraft spin is also presented.

Originality/value

Previous reviews on the prediction of aircraft spin and recovery characteristics were published many years ago and also have confined scope as they address particular spin technologies. This paper attempts to provide a comprehensive review on the subject and fill the information void regarding the state of the art aircraft spin technologies.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 July 2020

Bilal Malik, Jehanzeb Masud and Suhail Akhtar

This paper aims to present a literature review on analytical research on the prediction of aircraft spin and recovery characteristics, as it progressed from the early years of…

Abstract

Purpose

This paper aims to present a literature review on analytical research on the prediction of aircraft spin and recovery characteristics, as it progressed from the early years of aviation to current state of the art spin technologies.

Design/methodology/approach

Aerodynamic model development approaches that have been generally used in past spin studies are presented. Past contributions in application of these analytical techniques to predict spin and recovery characteristics on various fighters, general aviation and airliners are discussed, thus providing useful reference for researchers embarking aircraft spin research. An overview of the development of spin prevention and spin recovery technologies to mitigate stall/spin susceptibility is presented.

Findings

The challenges associated with the presented techniques that prompt possible future research directions are discussed.

Originality/value

Despite considerable progress in the recent years, no comprehensive review on the analytical and computational research techniques to predict aircraft post-stall/ spin characteristics has been undertaken in the recent years.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 April 2008

S. Mallik, N.N. Ekere, R. Durairaj and A.E. Marks

The purpose of this paper is to investigate the rheological behaviour of three different lead‐free solder pastes used for surface mount applications in the electronic industry.

Abstract

Purpose

The purpose of this paper is to investigate the rheological behaviour of three different lead‐free solder pastes used for surface mount applications in the electronic industry.

Design/methodology/approach

This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb‐free solder pastes.

Findings

Among the three geometries, the serrated parallel plate was found effective in minimising the wall‐slip effect. From the oscillatory stress‐sweep data with different frequencies; it was observed that the linear visco‐elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover, creep‐recovery and dynamic frequency‐sweep tests were also carried out without destroying the sample's structure and have yielded useful information on the pastes behaviour.

Research limitations/implications

More extensive research is needed to fully characterise the wall‐slip behaviour during the rheological measurements of solder pastes.

Practical implications

The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums.

Originality/value

This paper shows how wall‐slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours.

Details

Soldering & Surface Mount Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 May 2017

Mahmood Khalid and Khalid A. Juhany

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on…

Abstract

Purpose

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on its plain flat surface. Numerical simulation would require very large meshes to resolve flows at subscale level and the experimental evaluations would be equally difficult, requiring expensive measurement facilities with challenging procedures to secure such vehicles in confined test sections to obtain satisfactory wind on and wind off oscillations.

Design/methodology/approach

The design method uses appropriate pressure fields using small disturbance theory, which, in turn, is perturbed using the unsteady shock expansion theory to recover suitable expressions for the dynamic stability behaviour.

Findings

It was observed that the dynamic stability of the standard half-cone-type wave riders with flat upper surfaces deteriorates with the axis position measured from the pointed apex reaching a minimum at around x/co = 0.666. The half-cone wave rider with flat upper surfaces is dynamically less stable than a pure cone.

Research limitations/implications

The method is typically less accurate when the similarity parameter Mθ ≤ 1 = 1 or if the angle of attack is not small.

Practical implications

With renewed interest in hypersonic, future hypersonically would be designed as fast lifting bodies whose shapes would be close to the configurations of hypersonic wave riders, especially if they are designed to operate at upper atmosphere altitudes.

Originality/value

The analytic approach outlined in this paper for the evaluation of dynamic and static stability derivatives is original, drawing from the strengths of the small disturbance theory and shock expansion techniques. The method is particularly important, as there are no reported theoretical, numerical or experimental results in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 September 2010

S. Mallik, M. Schmidt, R. Bauer and N.N. Ekere

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with…

Abstract

Purpose

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with the printing performance.

Design/methodology/approach

A range of rheological characterization techniques including viscosity, yield stress, oscillatory and creep‐recovery tests were carried out to investigate the rheological properties and behaviours of four different solder paste formulations based on no‐clean flux composition, with different alloy composition, metal content and particle size. A series of printing tests were also conducted to correlate printing performance.

Findings

The results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. A decrease in yield stress value with temperature was observed. The results from the oscillatory test were used to study the solid‐ and liquid‐like behaviours of solder pastes. Creep‐recovery testing showed that the solder paste with smaller particle size exhibited less recovery.

Research limitations/implications

More extensive research is needed to simulate the paste‐roll, aperture‐filling and aperture‐emptying stages of the stencil printing process using rheological test methods.

Practical implications

Implementation of these rheological characterization procedures in product development, process optimization and quality control can contribute significantly to reducing defects in the assembly of flip‐chip devices and subsequently increasing the production yield.

Originality/value

The paper shows how the viscosity, yield stress, oscillatory and creep‐recovery test methods can be successfully used to characterize the flow behaviour of solder pastes and also to predict their performance during the stencil printing process.

Details

Soldering & Surface Mount Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 September 2011

Ting‐Jin Lim, Azhar‐Mat Easa, Abdul‐Alias Karim, Rajeev Bhat and Min‐Tze Liong

The aim of this study is to develop a soy‐based cream cheese (SCC) with textural characteristics comparable to that of commercial dairy cream cheese (DCC) via the addition of…

1457

Abstract

Purpose

The aim of this study is to develop a soy‐based cream cheese (SCC) with textural characteristics comparable to that of commercial dairy cream cheese (DCC) via the addition of microbial transglutaminase (MTG), soy protein isolate (SPI) and maltodextrin (MD).

Design/methodology/approach

Response surface methodology (RSM) was employed in this study to determine the effects of MTG, MD and SPI on firmness of SCC.

Findings

The second‐order model generated via RSM was significant with only a 9.76 per cent variation not explained by the model. The coefficient of regression revealed that MTG, MD and SPI showed significant linear effects (P<0.0001) on the firmness of SCC, while MTG and SPI showed significant quadratic effects. The model successfully predicted and developed a SCC model with similar firmness as that of DCC; via the combination of 2.57 per cent (w/w) of MTG, 19.69 per cent (w/w) of SPI and 19.69 per cent (w/w) of MD. Physicochemical analyses revealed that SCC possessed lower fat content, reduced saturated fatty acid and zero trans fat. Further rheological measurements revealed that SCC was more solid‐like at room temperature, but less elastic at refrigerated temperature compared to DCC. SEM and SDS‐PAGE analyses affirmed that the textural changes of SCC were attributed to MTG‐induced cross‐linking.

Originality/value

The research demonstrated that a non‐dairy cream cheese could be developed using soy. In addition, the SCC also contained better nutritional properties compared to its dairy counterpart.

Article
Publication date: 12 July 2011

M.A. Latif, J.C. Chedjou and K. Kyamakya

An image contrast enhancement is one of the most important low‐level image pre‐processing tasks required by the vision‐based advanced driver assistance systems (ADAS). This paper…

Abstract

Purpose

An image contrast enhancement is one of the most important low‐level image pre‐processing tasks required by the vision‐based advanced driver assistance systems (ADAS). This paper seeks to address this important issue keeping the real time constraints in focus, which is especially vital for the ADAS.

Design/methodology/approach

The approach is based on a paradigm of nonlinear‐coupled oscillators in image processing. Each layer of the colored images is treated as an independent grayscale image and is processed separately by the paradigm. The pixels with the lowest and the highest gray levels are chosen and their difference is enhanced to span all the gray levels in an image over the entire gray level range, i.e. [0 1]. This operation enhances the contrast in each layer and the enhanced layers are finally combined to produce a color image of a much improved quality.

Findings

The approach performs robust contrast enhancement as compared to other approaches available in the relevant literature. Generally, other approaches do need a new setting of parameters for every new image to perform its task, i.e. contrast enhancement. These approaches are not useful for real‐time applications such as ADAS. Whereas, the proposed approach presented in this paper performs contrast enhancement for different images under the same setting of parameters, hence giving rise to the robustness in the system. The unique setting of parameters is derived through a bifurcation analysis explained in the paper.

Originality/value

The proposed approach is novel in different aspects. First, the proposed paradigm comprises of coupled differential equations, and therefore, offers a continuous model as opposed to other approaches in the relevant literature. This continuity in the model is an inherent feature of the proposed approach, which could be useful in realizing real‐time image processing with an analog implemented circuit of the approach. Furthermore, a novel framework combining coupled oscillatory paradigm and cellular neural network is also possible to achieve ultra‐fast solution in image contrast enhancement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 December 1953

The Presidential Address to the Liverpool Engineering Society by Mr. Farthing (the salient points of which are reproduced in this issue) has particular bearing upon lubrication…

Abstract

The Presidential Address to the Liverpool Engineering Society by Mr. Farthing (the salient points of which are reproduced in this issue) has particular bearing upon lubrication and especially on young lubrication engineers. Mr. Farthing stressed the very wide field open to young engineers and the difficulties associated with training in order to cover as wide a field as may be necessary. It is usually so important to gain a wide knowledge before one can specialise and this is certainly the case with lubrication engineers. One cannot begin to fully appreciate the intricacies of a lubrication system with all its accessory components lubricating and guarding, for example, a large motive power plant or rolling mill, until one has more than a mere working knowledge of the plant itself, the duties it must perform, how it performs them and the snags that arise which might be overcome by correct lubrication. In view of the fact that lubrication systems are just as important in a textile mill as in a power station or a large brick works, the almost impossible‐to‐achieve‐range of knowledge that would simplify the work of a lubrication engineer is very obvious. Fortunately, lubricating principles apply to most cases and knowing how to apply one's knowledge from basic principles is the key to success in this difficult profession.

Details

Industrial Lubrication and Tribology, vol. 5 no. 12
Type: Research Article
ISSN: 0036-8792

1 – 10 of 113