Search results

1 – 10 of 52
Article
Publication date: 10 April 2017

Onur Arslan

Frictional sliding contact problems between laterally graded orthotropic half-planes and a flat rigid stamp are investigated. The presented study aims at guiding engineering…

192

Abstract

Purpose

Frictional sliding contact problems between laterally graded orthotropic half-planes and a flat rigid stamp are investigated. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members.

Design/methodology/approach

The solution procedure is based on a finite element (FE) approach which is conducted with an efficient FE analysis software ANSYS. The spatial gradations of the orthotropic stiffness constants through the horizontal axis are enabled utilizing the homogeneous FE approach. The Augmented Lagrangian contact algorithm is used as an iterative non-linear solution method in the contact analysis.

Findings

The accuracy of the proposed FE solution method is approved by using the comparisons of the results with those computed using an analytical technique. The prominent results indicate that the surface contact stresses can be mitigated upon increasing the degree of orthotropy and positive lateral gradations.

Originality/value

One can infer from the literature survey that, the contact mechanics analysis of orthotropic laterally graded materials has not been investigated so far. In this study, an FE method-based computational solution procedure for the aforementioned problem is addressed. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members. Additionally, this study provides some useful points related to computational contact mechanics analysis of orthotropic structures.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 1993

M.M. PEREZ and L.C. WROBEL

A numerical formulation for solving homogeneous anisotropic heat conduction problems based on the use of an isotropic fundamental solution is presented in detail. The analysis is…

Abstract

A numerical formulation for solving homogeneous anisotropic heat conduction problems based on the use of an isotropic fundamental solution is presented in detail. The analysis is carried out assuming a generic position of the coordinate axes, which may not coincide with the principal directions of orthotropy of the material. The two primary integral equations of the method are derived from the governing differential equation of the problem. Then, the numerical procedure is developed by rewriting the internal degrees of freedom that arise from the domain discretization in terms of the boundary nodes and solving the resulting system of linear equations for the boundary unknowns only. Special attention is given to the differentiation of singular integrals which yields additional terms as well as to the evaluation of the resulting Cauchy principal value integral. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve the problem of three‐dimensional heat conduction in anisotropic media and, foremost, to three‐dimensional orthotropic and anisotropic elasticity or elastoplasticity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 February 2022

Janos Plocher, Jean-Baptiste Wioland and Ajit Singh Panesar

Fibre-reinforced additive manufacturing (FRAM) with short and continuous fibres yields light and stiff parts and thus increasing industry acceptance. High material anisotropy and…

480

Abstract

Purpose

Fibre-reinforced additive manufacturing (FRAM) with short and continuous fibres yields light and stiff parts and thus increasing industry acceptance. High material anisotropy and specific manufacturing constraints shift the focus towards design for AM (DfAM), particularly on toolpath strategies. Assessing the design-property-processing relations of infill patterns is fundamental to establishing design guidelines for FRAM.

Design/methodology/approach

Subject to the DfAM factors performance, economy and manufacturability, the efficacy of two conventional infill patterns (grid and concentric) was compared with two custom strategies derived from the medial axis transformation (MAT) and guided by the principal stresses (MPS). The recorded stiffness and strength, the required CPU and print time, and the degree of path undulation and effective fibre utilisation (minimum printable fibre length) associated with each pattern, served as assessment indices for different case studies. Moreover, the influence of material anisotropy was examined, and a stiffness-alignment index was introduced to predict a pattern’s performance.

Findings

The highest stiffnesses and strengths were recorded for the MPS infill, emphasising the need for tailoring print paths rather than using fixed patterns. In contrast to the grid infill, the concentric infill offered short print times and reasonable utilisation of continuous fibres. The MAT-based infill yielded an excellent compromise between the three DfAM factors and experimentally resulted in the best performance.

Originality/value

This constitutes the first comprehensive investigation into infill patterns under DfAM consideration for FRAM, facilitating design and processing choices.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1998

Albert A. Groenwold and Nielen Stander

The constitutive relationship of a four‐node flat shell finite element with six degrees of freedom per node and a modified five‐point quadrature, previously presented by the…

Abstract

The constitutive relationship of a four‐node flat shell finite element with six degrees of freedom per node and a modified five‐point quadrature, previously presented by the authors, is extended to include symmetric and unsymmetric orthotropy. Through manipulation of the kinematic assumptions, provision is made for out‐of‐plane warp. A wide range of membrane and thin to moderately thick plate and shell examples are used to demonstrate the accuracy and robustness of the resulting element.

Details

Engineering Computations, vol. 15 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1996

M.L. Boubakar, L. Boulmane and J.C. Gelin

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these…

Abstract

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these problems, the first of which is the necessity to take into account properly membrane and bending effects. Presents a well‐adapted shell element. The second aspect concerns the description and the implementation of the initial orthotropic plastic behaviour for sheet metal parts, based on a formulation in a rotating frame using the initial microstructure rotation. The stress calculation algorithm is based on a particular implementation of the elastic predictor‐plastic corrector method. The last aspect concerns the solution procedures with a particular development concerning the treatment of the blankholder load as a constraint. A set of computational results validated with experiments prove the accuracy of the proposed approach in solving stamping problems.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1989

Mallikarjuna and Tarun Kant

A C° continuous finite element higher‐order displacement model is developed for the dynamic analysis of laminated composite plates. The displacement model accounts for non‐linear…

Abstract

A C° continuous finite element higher‐order displacement model is developed for the dynamic analysis of laminated composite plates. The displacement model accounts for non‐linear distribution of inplane displacement components through the plate thickness and the theory requires no shear correction coefficients. Explicit time marching schemes are adopted for integration of the dynamic equilibrium equation and a diagonal ‘lumped’ mass matrix is employed with a special procedure applicable to Lagrangian parabolic isoparametric elements. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the transient response are investigated. The effect of the coupling on the transient response is also investigated. Numerical results for deflections and stresses are presented for rectangular plates under various boundary conditions and loadings and compared with results from other sources.

Details

Engineering Computations, vol. 6 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 7 November 2016

Pawel Zygmunt Witczak and Michal Swiatkowski

The purpose of this paper is to calculate forces created by the magnetic leakage field, which are directly applied to tank walls via magnetic shield.

Abstract

Purpose

The purpose of this paper is to calculate forces created by the magnetic leakage field, which are directly applied to tank walls via magnetic shield.

Design/methodology/approach

Electromagnetic and mechanical calculations use 3D finite element technology, both applied to materials having constant orthotropic properties. The magnetic solver uses harmonic excitation; the analysis of mechanical deflection is carried out in static conditions. Two types of forces are considered: magnetostatic surface forces and magnetostriction volumetric ones. In measurements, the laser scanning vibrometer was applied.

Findings

Electromagnetic calculations must use an FE mesh much denser than that for typical power loss analysis. The magnetic orthotropy of the shield material does not create any important effects and it may be omitted. Magnetostriction forces are similar in value to magnetostatic ones, but their influence on the shield deformation is negligible.

Research limitations/implications

The results obtained for the analysis of the displacement of elements of the tank wall are exemplary – they show the difference between magnetostatic and magnetostriction excitation only. The analysis of the vibration of the transformer tank must include the presence of the oil inside the tank.

Originality/value

The asymmetrical placement of magnetic shields against the transformer core creates the visible differences in the magnitudes of magnetostatic forces applied to particular shields. Therefore, the design of magnetic shielding should also include the vibrational point of view.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2002

V. Sidabraite and V. Masteikaite

Undesirable effect of asymmetric drape often occurs when cutting patterns of flared skirt on cross. Out of this reason garment seams twist toward the front or back or folds form…

Abstract

Undesirable effect of asymmetric drape often occurs when cutting patterns of flared skirt on cross. Out of this reason garment seams twist toward the front or back or folds form different shapes on each side of the garment and this lowers garment aesthetic appearance. The new measuring procedure for asymmetric skirt drape near the side seam, based on bottom traces geometry, was developed in this paper. The experiment with four‐gored skirts of six lightweight fabrics was made. It was found that asymmetric drape depends on combination of grain lines directions of front and back panels of a skirt. There were made general conclusions relating skirt asymmetric drape with various fabric characteristics, such as bending rigidity, extensibility, shear rigidity, fabric weight and drape coefficient in this article. According to developed measuring procedure a final objective evaluation of skirt asymmetric drape rate will be done further.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2011

Johannes Kirn, Thomas Lorkowski and Horst Baier

This paper seeks to focus on material combinations for flexible matrix composites (FMCs) and the production methods thereof. These materials enable a high flexibility in one…

Abstract

Purpose

This paper seeks to focus on material combinations for flexible matrix composites (FMCs) and the production methods thereof. These materials enable a high flexibility in one direction while being very stiff in the other.

Design/methodology/approach

Tested were rubber, silicone and thermoplastic elastomer matrices with carbon fibers using different production methods. These tests focused on the impregnation of the fibers with the different matrices and the orthotropy of the produced materials.

Findings

In the paper, a production capability for large quantities of easy to use off‐the‐shelf material was developed. The produced material handles similar to prepreg material known from “classical” composite materials. Test specimens were manufactured and characterized for mechanical properties using tensile tests.

Originality/value

These FMC materials are envisaged for a new pneumatic actuation system for an aircraft's droop nose to replace the electro‐mechanical system designed in the SADE and SmartLED projects. Combining a tube‐like geometry and a variable fiber‐angle lay‐up enables a wide range of deformation possibilities (large design freedom of movement behaviour).

Article
Publication date: 14 June 2019

I St Doltsinis

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to…

Abstract

Purpose

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to both, the applicability of existing approaches and the advancement of concepts. This paper aims to explore in the context of linear elasticity the substitution of the simplex tetrahedral element in space and the triangle in the plane by corresponding spring cells deduced on a flexibility basis using the natural formalism.

Design/methodology/approach

The natural formalism is characterized by the homogeneous definition of strain and stress along the lines connecting nodes of the simplex tetrahedron and the triangle. The elastic compliance involves quantities along the prospective spring directions and offers itself for the transition to the spring cell. The diagonal entities are interpreted immediately as spring flexibilities, the off-diagonal terms account for the completeness of the substitution. In addition to the isotropic elastic material, the concept is discussed for anisotropic elasticity in the plane.

Findings

The natural point of view establishes the spring cell as part of the continuum element. The simplest configuration of pin-joined bars discards all geometrical and physical cross effects. The approach is attracting by its transparent simplicity, revealing deficiencies of the spring cell and identifying directly conditions for the complete substitution of the finite element.

Research limitations/implications

The spring cell counterparts of the tetrahedral- and the triangular finite elements allow employment in problems in three and two dimensions. However, the deficient nature of the approximation requires attention in the design of the discretization lattice such that the conditions of complete finite element substitution are approached as close as possible.

Practical implications

Apart from plane geometries, triangular spring cells have been assembled to lattice models of space structures such as membrane shells and similar. Tetrahedral cells have been used, in modelling plates and shell structures exhibiting bending stiffness.

Originality/value

The natural formalism of simplex finite elements in three and two dimensions is used for defining spring cells on a flexibility basis and exploring their properties. This is a novel approach to spring cells and an original employment of the natural concept in isotropic and anisotropic elasticity.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 52